Question

Consider a sequence defined recursively as X0= 1,X1= 3, and Xn=Xn-1+ 3Xn-2 for n ≥ 2....

Consider a sequence defined recursively as X0= 1,X1= 3, and Xn=Xn-1+ 3Xn-2 for n ≥ 2. Prove that Xn=O(2.4^n) and Xn = Ω(2.3^n).

Hint:First, prove by induction that 1/2*(2.3^n) ≤ Xn ≤ 2.8^n for all n ≥ 0

Find claim, base case and inductive step. Please show step and explain all work and details

Homework Answers

Answer #1

Any doubt in any step then comment below...i will explain you okk..

In solution i use Tn in place of Xn...so dont be confuse , both are same ..ok....

I prove that relation one by one , okk...

Base step is for n= 9 ..

And then we assume that result is true for any general step n= k ..and then by using this we have to prove that result is true for n= k+1 .. this is inductive step...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Define a sequence (xn)n≥1 recursively by x1 = 1, x2 = 2, and xn = ((xn−1)+(xn−2))/...
Define a sequence (xn)n≥1 recursively by x1 = 1, x2 = 2, and xn = ((xn−1)+(xn−2))/ 2 for n > 2. Prove that limn→∞ xn = x exists and find its value.
Define a sequence (xn)n≥1 recursively by x1 = 1 and xn = 1 + 1 /(xn−1)...
Define a sequence (xn)n≥1 recursively by x1 = 1 and xn = 1 + 1 /(xn−1) for n > 0. Prove that limn→∞ xn = x exists and find its value.
Suppose that a sequence an (n = 0,1,2,...) is defined recursively by a0 = 1, a1...
Suppose that a sequence an (n = 0,1,2,...) is defined recursively by a0 = 1, a1 = 7, an = 4an−1 − 4an−2 (n ≥ 2). Prove by induction that an = (5n + 2)2n−1 for all n ≥ 0.
Assume S is a recursivey defined set, defined by the following properties: 1 ∈ S n...
Assume S is a recursivey defined set, defined by the following properties: 1 ∈ S n ∈ S ---> 2n ∈ S n ∈ S ---> 7n ∈ S Use structural induction to prove that all members of S are numbers of the form 2^a7^b, with a and b being non-negative integers. Your proof must be concise. Remember to avoid the following common mistakes on structural induction proofs: -trying to force structural Induction into linear Induction. the inductive step is...
Define a Q-sequence recursively as follows. B.   x, 4 − x is a Q-sequence for any...
Define a Q-sequence recursively as follows. B.   x, 4 − x is a Q-sequence for any real number x. R.   If x1, x2,   , xj and y1, y2,   , yk are Q-sequences, so is     x1 − 1, x2,   , xj, y1, y2,   , yk − 3. Use structural induction (i.e., induction on the recursive definition) to prove that the sum of the numbers in any Q-sequence is 4. Base Case: Any Q-sequence formed by the base case of the definition has sum x +...
. Consider the sequence defined recursively as a0 = 5, a1 = 16 and ak =...
. Consider the sequence defined recursively as a0 = 5, a1 = 16 and ak = 7ak−1 − 10ak−2 for all integers k ≥ 2. Prove that an = 3 · 2 n + 2 · 5 n for each integer n ≥ 0
Suppose that the sequence x0, x1, x2... is defined by x0 = 3, x1 = 7,...
Suppose that the sequence x0, x1, x2... is defined by x0 = 3, x1 = 7, and xk+2 = xk+1+20xk for k?0. Find a general formula for xk. I don't even know how to start this. Thanks!
Consider the sequence (xn)n given by x1 = 2, x2 = 2 and xn+1 = 2(xn...
Consider the sequence (xn)n given by x1 = 2, x2 = 2 and xn+1 = 2(xn + xn−1). (a) Let u, w be the solutions of the equation x 2 −2x−2 = 0, so that x 2 −2x−2 = (x−u)(x−w). Show that u + w = 2 and uw = −2. (b) Possibly using (a) to aid your calculations, show that xn = u^n + w^n .
Suppose that the sequence x0, x1, x2... is defined by x0 = 6, x1 = 5,...
Suppose that the sequence x0, x1, x2... is defined by x0 = 6, x1 = 5, and xk+2 = ?3xk+1?2xk for k?0. Find a general formula for xk. Be sure to include parentheses where necessary, e.g. to distinguish 1/(2k) from 1/2k. . xk = ?
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that...
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that lim n→∞ (x1 + x2 + · · · + xn)/ n = 0 .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT