Question

Let A be an mxn matrix. Show that the set of all solutions to the homogeneous...

Let A be an mxn matrix. Show that the set of all solutions to the homogeneous equation Ax=0 is a subspace of R^n and the set of all vectors b such that Ax=b is consistent is a subspace of R^m. Is the set of solutions to a non-homogeneous equation Ax=b a subspace of R^n? Explain why or why not.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar...
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar multiplication is a finite dimensional vector space with dim GLm,n(R) = mn. Show that if V and W be finite dimensional vector spaces with dim V = m and dim W = n, B a basis for V and C a basis for W then hom(V,W)-----MatB--->C(-)--------> GLm,n(R) is a bijective linear transformation. Hence or otherwise, obtain dim hom(V,W). Thank you!
Let A be a given (3 × 3) matrix, and consider the equation Ax = c,...
Let A be a given (3 × 3) matrix, and consider the equation Ax = c, with c = [1 0 − 1 ]T . Suppose that the two vectors x1 =[ 1 2 3]T and x2 =[ 3 2 1] T are solutions to the above equation. (a) Find a vector v in N (A). (b) Using the result in part (a), find another solution to the equation Ax = c. (c) With the given information, what are the...
Let L be a homogeneous linear system involving m equations and n real variables. Let H...
Let L be a homogeneous linear system involving m equations and n real variables. Let H be the solution set of L. Prove that H is a subspace of R^n.
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace...
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace of M 2x2. I know that a diagonal matrix is a square of n x n matrix whose nondiagonal entries are zero, such as the n x n identity matrix. But could you explain every step of how to prove that this diagonal matrix is a subspace of M 2x2. Thanks.
7. Answer the following questions true or false and provide an explanation. • If you think...
7. Answer the following questions true or false and provide an explanation. • If you think the statement is true, refer to a definition or theorem. • If false, give a counter-example to show that the statement is not true for all cases. (a) Let A be a 3 × 4 matrix. If A has a pivot on every row then the equation Ax = b has a unique solution for all b in R^3 . (b) If the augmented...
Is the solution set of a non-homogeneous linear system "Ax=b" a subspace? Give reason(s) to support...
Is the solution set of a non-homogeneous linear system "Ax=b" a subspace? Give reason(s) to support your answer
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1...
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1 ≤ i, j ≤ n) and having the following interesting property: ai1 + ai2 + ..... + ain = 0 for each i = 1, 2, ...., n Based on this information, prove that rank(A) < n. b) Let A ∈ R m×n be a matrix of rank r. Suppose there are right hand sides b for which Ax = b has no solution,...
Let A be an m×n matrix, x a vector in Rn, and b a vector in...
Let A be an m×n matrix, x a vector in Rn, and b a vector in Rm. Show that if x1 in Rn is a solution to Ax=b and x2 is a solution to Ax=⃗0, then x1 +x2 is a solution to Ax=b.
Let B be an mxn matrix. Prove c is a non-zero scalar, then dim(rowspace(cB)) = dim(rowspace(B)).
Let B be an mxn matrix. Prove c is a non-zero scalar, then dim(rowspace(cB)) = dim(rowspace(B)).
Let V be a vector subspace of R^n for some n?N. Show that if k>dim(V) then...
Let V be a vector subspace of R^n for some n?N. Show that if k>dim(V) then the set of any k vectors in V is dependent.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT