Question

Logistic Equation The logistic differential equation y′=y(1−y) appears often in problems such as population modeling. (a)...

Logistic Equation The logistic differential equation y′=y(1−y) appears often in problems such as population modeling.

(a) Graph the slope field of the differential equation between y= 0 and y= 1. Does the slope depend on t?

(b) Suppose f is a solution to the initial value problem with f(0) = 1/2. Using the slope field, what can we say about fast→∞? What can we say about fast→−∞?

(c) Verify that f(t) =11 +e−tis a solution to the initial value problem from part

(b). As t→ ±∞, is the end behavior of the solution similar to what you expected from the slope field above?

(d) Now, explicitly solve the initial value problem

Dy/dt=y(1−y)         y(0) =1/2

Hint: The logistic equation is separable. You may need to use partial fraction decomposition.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
Assignment #3 Modeling and the Geometry of Systems 1. For this problem, we study the nonlinear...
Assignment #3 Modeling and the Geometry of Systems 1. For this problem, we study the nonlinear differential equation: dx dt = y dy dt = x − x^3 − y^3 a) Algebraically determine all of the equilibria to the differential equation . b) For a solution {x(t), y(t)} with {x(0), y(0)} = {x0, y0}, use your phase diagram to describe the long term behavior of the solution. 1. {x0, y0} = {1, 1} 2. {x0, y0} = {−1, −1} 3....
Choose the correct answers If y1 and y2 are two solutions of a nonhomogeneous equation ayjj+...
Choose the correct answers If y1 and y2 are two solutions of a nonhomogeneous equation ayjj+ byj+ cy =f (x), then their difference is a solution of the equation ayjj+ byj+ cy = 0. If f (x) is continuous everywhere, then there exists a unique solution to the following initial value problem.                                   f (x)yj= y,   y(0) = 0 The differential equation yjj + t2yj − y = 3 is linear. There is a solution to the ODE yjj+3yj+y...
Write a matlab script file to solve the differential equation dy/dt = 1 − y^3 with...
Write a matlab script file to solve the differential equation dy/dt = 1 − y^3 with initial condition y(0)=0, from t=0 to t=10. matlab question
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x...
1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x − y 2) Solve the given differential equation by separation of variables. y ln(x) dx/dy = (y+1/x)^2 3) Find an explicit solution of the given initial-value problem. dx/dt = 7(x2 + 1),  x( π/4)= 1
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
Use a slope field plotter to plot the slope field for the differential equation dy/dx=sqrt(x-y) and...
Use a slope field plotter to plot the slope field for the differential equation dy/dx=sqrt(x-y) and plot the solution curve for the initial condition y(2)=2
1. Sketch the direction field for the following differential equation dy dx = y − x....
1. Sketch the direction field for the following differential equation dy dx = y − x. You may use maple and attach your graph. Also sketch the solution curves with initial conditions y(0) = −1 and y(0) = 1.
Consider the differential equation: y'' = y' + y a) derive the characteristic polynomial for the...
Consider the differential equation: y'' = y' + y a) derive the characteristic polynomial for the differential equation b) write the general form of the solution to the differential equation c) using the general solution, solve the initial value problem: y(0) = 0, y'(0) = 1 d) Using only the information provided in the description of the initial value problem, make an educated guess as to what the value of y''(0) is and explain how you made your guess
Consider the autonomous differential equation dy/ dt = f(y) and suppose that y1 is a critical...
Consider the autonomous differential equation dy/ dt = f(y) and suppose that y1 is a critical point, i.e., f(y1) = 0. Show that the constant equilibrium solution y = y1 is asymptotically stable if f 0 (y1) < 0 and unstable if f 0 (y1) > 0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT