Question

Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set,...

Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set, and suppose {w⃗1,w⃗2,w⃗3} ⊂ X is a linearly dependent set. Define V = span{⃗v1,⃗v2,⃗v3} and W = span{w⃗1,w⃗2,w⃗3}.

(a) Is there a linear transformation P : V → W such that P(⃗vi) = w⃗i for i = 1, 2, 3?

(b) Is there a linear transformation Q : W → V such that Q(w⃗i) = ⃗vi for i = 1, 2, 3?

Hint: the easiest way to show a linear transformation exists is to define a particular linear transformation. To define a linear transformation, you must specify what it does to every element in its domain.

Homework Answers

Answer #1

please vote up for the solution. Thanks!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V....
Prove that Let S={v1,v2,v3} be a linearly indepedent set of vectors om a vector space V. Then so are {v1},{v2},{v3},{v1,v2},{v1,v3},{v2,v3}
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and...
If v1 and v2 are linearly independent vectors in vector space V, and u1, u2, and u3 are each a linear combination of them, prove that {u1, u2, u3} is linearly dependent. Do NOT use the theorem which states, " If S = { v 1 , v 2 , . . . , v n } is a basis for a vector space V, then every set containing more than n vectors in V is linearly dependent." Prove without...
Suppose the vectors v1, v2, . . . , vp span a vector space V ....
Suppose the vectors v1, v2, . . . , vp span a vector space V . (1) Show that for each i = 1, . . . , p, vi belongs to V ; (2) Show that given any vector u ∈ V , v1, v2, . . . , vp, u also span V
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix...
Suppose ⃗v1,⃗v2,⃗v3,⃗v4 ∈ R3. Let V = {⃗v1,⃗v2,⃗v3,⃗v4} and let X = [⃗v1|⃗v2|⃗v3|⃗v4] be the matrix whose columns are ⃗v1,⃗v2,⃗v3,⃗v4. Suppose further that every subset Y ⊂ V of size two is linearly independent. Explain what form(s) rref(X), the reduced row echelon form of X, must take in this case. Hint: you won’t be able to pin down exact numbers for every entry of rref(X), but you might know things like whether the entry can be zero or not, etc.
Suppose v1, v2, . . . , vn is linearly independent in V and w ∈...
Suppose v1, v2, . . . , vn is linearly independent in V and w ∈ V . Show that v1, v2, . . . , vn, w is linearly independent if and only if w ∈/ Span(v1, v2, . . . , vn).
A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether...
A. Suppose that v1, v2, v3 are linearly independant and w1=v1+v2, w2=v2-v3, w3= v2+v3. Determine whether w1, w2, w3 are linear independent or linear deppendent. B. Find the largest possible number of independent vectors among: v1=(1,-1,0,0), v2=(1,0,-1,0), v3=(1,0,0,-1), v4=(0,1,-1,0), v5=(0,1,0,-1), v6=(0,0,1,-1)
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V...
1. Prove that if {⃗v1, ⃗v2, ⃗v3} is a linear dependent set of vectors in V , and if ⃗v4 ∈ V , then {⃗v1, ⃗v2, ⃗v3, ⃗v4} is also a linear dependent set of vectors in V . 2. Prove that if {⃗v1,⃗v2,...,⃗vr} is a linear dependent set of vectors in V, and if⃗ vr + 1 ,⃗vr+2,...,⃗vn ∈V, then {⃗v1,⃗v2,...,⃗vn} is also a linear dependent set of vectors in V.
† Let β={v1,v2,…,vn} be a basis for a vector space V and T:V→V be a linear...
† Let β={v1,v2,…,vn} be a basis for a vector space V and T:V→V be a linear transformation. Prove that [T]β is upper triangular if and only if T(vj)∈span({v1,v2,…,vj}) j=1,2,…,n. Visit goo.gl/k9ZrQb for a solution.
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT