Question

Define a relation on N x N by (a, b)R(c, d) iff ad=bc a. Show that...

Define a relation on N x N by (a, b)R(c, d) iff ad=bc

a. Show that R is an equivalence relation.

b. Find the equivalence class E(1, 2)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff...
2. Define a relation R on pairs of real numbers as follows: (a, b)R(c, d) iff either a < c or both a = c and b ≤ d. Is R a partial order? Why or why not? If R is a partial order, draw a diagram of some of its elements. 3. Define a relation R on integers as follows: mRn iff m + n is even. Is R a partial order? Why or why not? If R is...
4. Let A={(1,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)}. The relation R is defined on A as follows: For all (a, b),(c,...
4. Let A={(1,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)}. The relation R is defined on A as follows: For all (a, b),(c, d) ∈ A, (a, b) R (c, d) ⇔ ad = bc . R is an equivalence relation. Find the distinct equivalence classes of R.
Recall from class that we defined the set of integers by defining the equivalence relation ∼...
Recall from class that we defined the set of integers by defining the equivalence relation ∼ on N × N by (a, b) ∼ (c, d) =⇒ a + d = c + b, and then took the integers to be equivalence classes for this relation, i.e. Z = [(a, b)]∼ | (a, b) ∈ N × N . We then proceeded to define 0Z = [(0, 0)]∼, 1Z = [(1, 0)]∼, − [(a, b)]∼ = [(b, a)]∼, [(a, b)]∼...
Let X be finite set . Let R be the relation on P(X). A,B∈P(X) A R...
Let X be finite set . Let R be the relation on P(X). A,B∈P(X) A R B Iff |A|=|B| prove R is an equivalence relation
1. We define a relation C on the set of humans as xRy ⇐⇒ x and...
1. We define a relation C on the set of humans as xRy ⇐⇒ x and y were born in the same country Describe the equivalence class containing yourself as an element. 2. Let R be an equivalence relation with (x, y) ∈ R and (y, z) is not ∈ R (that is, y does not relate to z). Can you determine whether or not xRz? Why or why not?
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Show that the equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq. you may use the following lemma: If p is prime...
Consider the following set S = {(a,b)|a,b ∈ Z,b 6= 0} where Z denotes the integers....
Consider the following set S = {(a,b)|a,b ∈ Z,b 6= 0} where Z denotes the integers. Show that the relation (a,b)R(c,d) ↔ ad = bc on S is an equivalence relation. Give the equivalence class [(1,2)]. What can an equivalence class be associated with?
Define the relation τ on Z by aτ b if and only if there exists x...
Define the relation τ on Z by aτ b if and only if there exists x ∈ {1,4,16} such that ax ≡ b (mod 63). (a) Prove that τ is an equivalence relation. (b) Prove that there exists an integer n with 1 ≤ n ≤ 62 such that the equivalence class of n is{m ∈ Z | m ≡ n (mod 63)}.
Define a relation R on Z by aRb if and only if |a| = |b|. a)...
Define a relation R on Z by aRb if and only if |a| = |b|. a) Prove R is an equivalence relation b) Compute [0] and [n] for n in Z with n different than 0.
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n