Question

1. Write the following sets in list form. (For example, {x | x ∈N,1 ≤ x...

1. Write the following sets in list form. (For example, {x | x ∈N,1 ≤ x < 6} would be {1,2,3,4,5}.) (a) {a | a ∈Z,a2 ≤ 1}. (b) {b2 | b ∈Z,−2 ≤ b ≤ 2} (c) {c | c2 −4c−5 = 0}. (d) {d | d ∈R,d2 < 0}.

2. Let S be the set {1,2,{1,3},{2}}. Answer true or false: (a) 1 ∈ S. (b) {2}⊆ S. (c) 3 ∈ S. (d) {1,3}∈ S. (e) {1,2}∈ S (f) {2}∈ S. (g) {2,{2}}⊆ S. (h) {3}⊆ S. (i) ∅∈ S. (j) ∅⊆ S.

3. Let A = N, B = {y3 | y ∈Z}, C = {z + 3 | z ∈Z, −2 ≤ z ≤ 10}, D = Q. For each of the following, state whether they are true or false. If true, give a reason; if false, give a counterexample. (a) A ⊆ B. (b) B ⊆ A. (c) C ⊆ A. (d) A∪B ⊆ D. (e) C ∩D ⊆ B.

4. For each of the following, give an example of a statment P and a statement Q that satisfy the given conditions. (a) P ⇒ Q but Q 6⇒ P. (b) P if and only if Q. (c) P if Q.


5. Prove that if x is an odd integer, then there exists some integer y such that x2 = 4y +1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider p(x) and q(x), where x ∈ U = {1, 2}. If the following is true,...
Consider p(x) and q(x), where x ∈ U = {1, 2}. If the following is true, give a rigorous argument. If it is false, give a counterexample. (Note that “p implies q” is the same as “if p, then q” and also as “p → q.”) (i) (∀x ∈ U, p(x) → q(x)) implies [ (∀x ∈ U, p(x)) → (∀x ∈ U, q(x)) ] ? What about its converse ? (ii) (∃x ∈ U, p(x) → q(x)) implies [...
1. For each statement that is true, give a proof and for each false statement, give...
1. For each statement that is true, give a proof and for each false statement, give a counterexample     (a) For all natural numbers n, n2 +n + 17 is prime.     (b) p Þ q and ~ p Þ ~ q are NOT logically equivalent.     (c) For every real number x ³ 1, x2£ x3.     (d) No rational number x satisfies x^4+ 1/x -(x+1)^(1/2)=0.     (e) There do not exist irrational numbers x and y such that...
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there...
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there is a nearest point p∈K to x; that is, there is a point p∈K such that, for all other q∈K, d(p,x)≤d(q,x). [Suggestion: As a start, let S={d(x,y):y∈K} and show there is a sequence (qn) from K such that the numerical sequence (d(x,qn)) converges to inf(S).] Let X=R^2 and T={(x,y):x^2+y^2=1}. Show, there is a point z∈X and distinct points a,b∈T that are nearest points to...
Consider the function F(x, y, z) =x2/2− y3/3 + z6/6 − 1. (a) Find the gradient...
Consider the function F(x, y, z) =x2/2− y3/3 + z6/6 − 1. (a) Find the gradient vector ∇F. (b) Find a scalar equation and a vector parametric form for the tangent plane to the surface F(x, y, z) = 0 at the point (1, −1, 1). (c) Let x = s + t, y = st and z = et^2 . Use the multivariable chain rule to find ∂F/∂s . Write your answer in terms of s and t.
Consider plane P: 4x -y + 2z = 8, line: <x, y, z> = <1+t, -1+2t,...
Consider plane P: 4x -y + 2z = 8, line: <x, y, z> = <1+t, -1+2t, 3t>, and point Q(2,-1,3) b) Find the perpendicular distance between point Q and plane P
Q(x,y) is a propositional function and the domain for the variables x & y is: {1,2,3}....
Q(x,y) is a propositional function and the domain for the variables x & y is: {1,2,3}. Assume Q(1,3), Q(2,1), Q(2,2), Q(2,3), Q(3,1), Q(3,2) are true, and Q(x,y) is false otherwise. Find which statements are true. 1. ∀yƎx(Q(x,y)->Q(y,x)) 2. ¬(ƎxƎy(Q(x,y)/\¬Q(y,x))) 3. ∀yƎx(Q(x,y) /\ y>=x)
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2)...
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2) b) Determine fx(x|y=y2) Ans: 1d(x-x2) c) Determine fy(y|x=x1) Ans: (1/3)d(y-y1)+(2/3)d(y-y3) d) Determine fx(y|x=x2) Ans: (3/9)d(y-y1)+(1/9)d(y-y2)+(5/9)d(y-y3) 4.4-JG2 Given fx,y(x,y)=2(1-xy) for 0 a) fx(x|y=0.5) (Point Conditioning) Ans: (4/3)(1-x/2) b) fx(x|0.5
For each set of conditions below, give an example of a predicate P(n) defined on N...
For each set of conditions below, give an example of a predicate P(n) defined on N that satisfy those conditions (and justify your example), or explain why such a predicate cannot exist. (a) P(n) is True for n ≤ 5 and n = 8; False for all other natural numbers. (b) P(1) is False, and (∀k ≥ 1)(P(k) ⇒ P(k + 1)) is True. (c) P(1) and P(2) are True, but [(∀k ≥ 3)(P(k) ⇒ P(k + 1))] is False....
Let A, B, C, D be sets, and consider the following: Theorem 1. A × (B...
Let A, B, C, D be sets, and consider the following: Theorem 1. A × (B ∪ C) = (A × B) ∪ (A × C). Theorem 2. (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D). Theorem 3. (A × B) ∆ (C × D) = (A ∆ C) × (B ∆ D). For each, give a proof or counterexample.
(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r...
(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r are logically equivalent using either a truth table or laws of logic. (2) Let A, B and C be sets. If a is the proposition “x ∈ A”, b is the proposition “x ∈ B” and c is the proposition “x ∈ C”, write down a proposition involving a, b and c that is logically equivalentto“x∈A∪(B−C)”. (3) Consider the statement ∀x∃y¬P(x,y). Write down a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT