Question

Show that ∀xP (x) ∨ ∀xQ(x) ̸≡ ∀x [P (x) ∨ Q(x)] By defining a universe...

Show that

∀xP (x) ∨ ∀xQ(x) ̸≡ ∀x [P (x) ∨ Q(x)]
By defining a universe of discourse and predicts P, Q over it such that one side of the expression evaluates

to true and the other side evaluates to false.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show the following are not logically equivalent: ∀xP (x) ∨ ∀xQ(x) and ∀x(P (x) ∨ Q(x)).
Show the following are not logically equivalent: ∀xP (x) ∨ ∀xQ(x) and ∀x(P (x) ∨ Q(x)).
Discrete mathematics counterexamples - Supplementary question: S1.) Give a counterexample to show that "∀x(p(x) --> Q(x))...
Discrete mathematics counterexamples - Supplementary question: S1.) Give a counterexample to show that "∀x(p(x) --> Q(x)) and ∀xP(x) --> ∀xQ(x)" may not be logically equivalent.
If X does not occur free in Q, then ∀X(P(X) -> Q) is semantically equivalent with∃XP(X)...
If X does not occur free in Q, then ∀X(P(X) -> Q) is semantically equivalent with∃XP(X) -> Q. Give an example to show that these formulas will not necessarily be equivalent if X does occur free in Q.
(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r...
(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r are logically equivalent using either a truth table or laws of logic. (2) Let A, B and C be sets. If a is the proposition “x ∈ A”, b is the proposition “x ∈ B” and c is the proposition “x ∈ C”, write down a proposition involving a, b and c that is logically equivalentto“x∈A∪(B−C)”. (3) Consider the statement ∀x∃y¬P(x,y). Write down a...
Is ∃x[P(x)∧Q(x)] equals ∃xP(x)∧∃yQ(y) ? Why? What is the relationship between them?
Is ∃x[P(x)∧Q(x)] equals ∃xP(x)∧∃yQ(y) ? Why? What is the relationship between them?
Using the laws of propositional equivalence,  show that  p → p ∧ ( p → q) is logically...
Using the laws of propositional equivalence,  show that  p → p ∧ ( p → q) is logically equivalent to p → q. That means a chain of equivalences starting with the first expression and ending with p → q. Remember: The connective ∧ has higher precedence than the connective → so be sure to parse the original expression correctly! To start you off here's a possible first step. p → p ^ ( p → q) ≡   p → p ^...
Show if X ~ F( p, q) , then [(p/q) X]/[1+(p/q)X] ~ beta (p/2, q/2). Use...
Show if X ~ F( p, q) , then [(p/q) X]/[1+(p/q)X] ~ beta (p/2, q/2). Use transformation method.
Let P(x), Q(x) be premises in the free variable x. Express each of the following three...
Let P(x), Q(x) be premises in the free variable x. Express each of the following three sentences using logical symbols. i. Either P(x) is never true or P(x) is true for at least two values of x. ii. For exactly one x, P(x) and Q(x) are both false or both true. iii. At most one of P(x) and Q(x) is true for each x
Let T : P(R) → P(R) be the linear map defined by T(p(x)) = xp′(x) (you...
Let T : P(R) → P(R) be the linear map defined by T(p(x)) = xp′(x) (you may take it for granted that T is linear). Show that for each λ ∈ Z with λ ≥ 0, λ is an eigenvalue of T , and xλ is a corresponding eigenvector.
Please explained using the inference rules and also show all steps. In each part below, give...
Please explained using the inference rules and also show all steps. In each part below, give a formal proof that the sentence given is valid or else provided an interpretation in which the sentence is false. (a) ∀xP' (x) → ∃x[P(x) → Q'(x)]. (b) ∃x[P(x) → Q'(x)] → ∃xP' (x).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT