Question

Prove the Lattice Isomorphism Theorem for Rings. That is, if I is an ideal of a...

Prove the Lattice Isomorphism Theorem for Rings. That is, if I is an ideal of a ring R, show that the correspondence A ↔ A/I is an inclusion preserving bijections between the set of subrings A ⊂ R that contain I and the set of subrings of R/I. Furthermore, show that A (a subring containing I) is an ideal of R if and only if A/I is an ideal of R/I.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove the Lattice Isomorphism Theorem for Rings. That is, if I is an ideal of a...
Prove the Lattice Isomorphism Theorem for Rings. That is, if I is an ideal of a ring R, show that the correspondence A ↔ A/I is an inclusion preserving bijections between the set of subrings A ⊂ R that contain I and the set of subrings of R/I. Furthermore, show that A (a subring containing I) is an ideal of R if and only if A/I is an ideal of R/I.
Let R be a ring, and set I:={(r,0)|r∈R}. Prove that I is an ideal of R×R,...
Let R be a ring, and set I:={(r,0)|r∈R}. Prove that I is an ideal of R×R, and that (R×R)/I is isomorphism to R.
Let I be an ideal in a commutative ring R with identity. Prove that R/I is...
Let I be an ideal in a commutative ring R with identity. Prove that R/I is a field if and only if I ? R and whenever J is an ideal of R containing I, I = J or J = R.
Suppose that R is a commutative ring and I is an ideal in R. Please prove...
Suppose that R is a commutative ring and I is an ideal in R. Please prove that I is maximal if and only if R/I is a field.
Let I be an ideal of the ring R. Prove that the reduction map R[x] →...
Let I be an ideal of the ring R. Prove that the reduction map R[x] → (R/I)[x] is a ring homomorphism.
9.3.2 Problem. Let R be a ring and I an ideal of R. Let π :...
9.3.2 Problem. Let R be a ring and I an ideal of R. Let π : R→R/I be the natural projection. Let J be an ideal of R. Show that π−1(π(J)) = (I, J). Show that if J is a maximal ideal of R with, I not ⊆ J, then π (J) = R/I. Suppose that J is an ideal of R with I ⊆ J. Show that J is a maximal ideal of R if and only if π(J)...
Prove the following: Theorem. Let X be a set and {Xi ⊆ X : i ∈...
Prove the following: Theorem. Let X be a set and {Xi ⊆ X : i ∈ I} be a partition of X. Then R = { (x1, x2) ∈ X × X : ∃i ∈ I,(x1 ∈ Xi) ∧ (x2 ∈ Xi) } is an equivalence relation on X.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT