Question

Let f1 be a continuous function with different signs at a,b, with a < b and...

Let f1 be a continuous function with different signs at a,b, with a < b and let {pn}∞ n=1 be bisection method’s sequence of approximations on f1 using starting interval [a,b]. Let f2 be a continuous function with different signs at a,b, with a < b and let {qn}∞ n=1 be bisection method’s sequence of approximations on f2 using starting interval [a,b].
(a) Prove (perhaps by induction) if pk = qk, for some k, then pi = qi for all i < k.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs...
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs then there is an r ∈ (a,b) such that f(r) = 0. Using the claims: f is continuous on [a,b] there exists a left sequence (a_n) that is increasing and bounded and converges to r, and left decreasing sequence and bounded (b_n)=r. limf(a_n)= r= limf(b_n), and f(r)=0.
1- Let the bisection method be applied to a continuous function, resulting in the intervals[a0,b0],[a1,b1], and...
1- Let the bisection method be applied to a continuous function, resulting in the intervals[a0,b0],[a1,b1], and so on. Letcn=an+bn2, and let r=lim n→∞cn be the corresponding root. Let en=r−c a. 1-1) Show that|en|≤2−n−1(b0−a0). b. Show that|cn−cn+1|=2−n−2(b0−a0). c Show that it is NOT necessarily true that|e0|≥|e1|≥···by considering the function f(x) =x−0.2on the interval[−1,1].
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of...
Let B = { f: ℝ  → ℝ | f is continuous } be the ring of all continuous functions from the real numbers to the real numbers. Let a be any real number and define the following function: Φa:B→R f(x)↦f(a) It is called the evaluation homomorphism. (a) Prove that the evaluation homomorphism is a ring homomorphism (b) Describe the image of the evaluation homomorphism. (c) Describe the kernel of the evaluation homomorphism. (d) What does the First Isomorphism Theorem for...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT