Question

Exercise 2.4.5: Suppose that a Cauchy sequence {xn} is such that for every M ∈ N,...

Exercise 2.4.5: Suppose that a Cauchy sequence {xn} is such that for every M ∈ N, there exists a k ≥ M and an n ≥ M such that xk < 0 and xn > 0. Using simply the definition of a Cauchy sequence and of a convergent sequence, show that the sequence converges to 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let (xn) be Cauchy in (M, d) and a ∈ M. Show that the sequence d(xn,...
Let (xn) be Cauchy in (M, d) and a ∈ M. Show that the sequence d(xn, a) converges in R. (Note: It is not given that xn converges to a. Hint: Use Reverse triangle inequality.)
Use the definition of a Cauchy sequence to prove that the sequence defined by xn =...
Use the definition of a Cauchy sequence to prove that the sequence defined by xn = (3/2)^n is a Cauchy sequence in R.
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.
Suppose that every Cauchy sequence of X has a convergent subsequence in X. Show that X...
Suppose that every Cauchy sequence of X has a convergent subsequence in X. Show that X is complete.
Real Analysis: Suppose f: [0,1] --> R is continuous, and {xn} is a Cauchy sequence in...
Real Analysis: Suppose f: [0,1] --> R is continuous, and {xn} is a Cauchy sequence in [0,1]. Prove or disprove that {f(xn)} is a Cauchy Sequence.
Let xn be a sequence such that for every m ∈ N, m ≥ 2 the...
Let xn be a sequence such that for every m ∈ N, m ≥ 2 the sequence limn→∞ xmn = L. Prove or provide a counterexample: limn→∞ xn = L.
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that...
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that lim n→∞ (x1 + x2 + · · · + xn)/ n = 0 .
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn|...
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn| ≤ θn  for n = 1, 2, . . .. a) Show that for any 1 ≤ n < m one has |xm − xn| ≤ (θn/ 1-θ )*(1 − θ m−n ). Conclude that (xn) is Cauchy b)If lim xn = x* , prove the following error in approximation (the "error in approximation" is the same as error estimation in Taylor Theorem) in t:...
Let {Xn} be a sequence of random variables that follow a geometric distribution with parameter λ/n,...
Let {Xn} be a sequence of random variables that follow a geometric distribution with parameter λ/n, where n > λ > 0. Show that as n → ∞, Xn/n converges in distribution to an exponential distribution with rate λ.
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn}...
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn} is a sequence of real numbers that converges. Prove that {xn+bn} converges to +infinity.