Question

Let E be a field of characteristic p, where p is a prime number. Show that...

Let E be a field of characteristic p, where p is a prime number. Show that for all x, y that are elements of E, we have (x + y)^p =x^p + y^p, and hence by induction, (x + y)^p^n = x^p^n + y^p^n .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if E is a finite field with characteristic p, then the number of elements...
Prove that if E is a finite field with characteristic p, then the number of elements in E equals p^n, for some positive integer n.
Let E/F be a field extension, and let α be an element of E that is...
Let E/F be a field extension, and let α be an element of E that is algebraic over F. Let p(x) = irr(α, F) and n = deg p(x). (a) For f(x) ∈ F[x], let r(x) (∈ F[x]) be the remainder of f(x) when divided by p(x). Prove that f(x) +p(x)= r(x)+p(x)in F[x]/p(x). (b) Prove that if |F| < ∞, then | F[x]/p(x)| = |F|n. (For a set A, we denote by |A| the number of elements in A.)
Let G be a group of order p^2, where p is a prime. Show that G...
Let G be a group of order p^2, where p is a prime. Show that G must have a subgroup of order p. please show with notation if possible
Definition: Let p be a prime and 0 < n then the p-exponent of n, denoted...
Definition: Let p be a prime and 0 < n then the p-exponent of n, denoted ε(n, p) is the largest number k such that pk | n. Note: for p does not divide n we have ε(n,p) = 0 Notation: Let n ∈ N+ we denote the set {p : p is prime and p | n} by Pr(n). Observe that Pr(n) ⊆ {2, 3, . . . n} so that Pr(n) is finite. Problem: Let a, b be...
1. Let p be any prime number. Let r be any integer such that 0 <...
1. Let p be any prime number. Let r be any integer such that 0 < r < p−1. Show that there exists a number q such that rq = 1(mod p) 2. Let p1 and p2 be two distinct prime numbers. Let r1 and r2 be such that 0 < r1 < p1 and 0 < r2 < p2. Show that there exists a number x such that x = r1(mod p1)andx = r2(mod p2). 8. Suppose we roll...
A natural number p is a prime number provided that the only integers dividing p are...
A natural number p is a prime number provided that the only integers dividing p are 1 and p itself. In fact, for p to be a prime number, it is the same as requiring that “For all integers x and y, if p divides xy, then p divides x or p divides y.” Use this property to show that “If p is a prime number, then √p is an irrational number.” Please write down a formal proof.
Suppose S is a ring with p elements, where p is prime. a)Show that as an...
Suppose S is a ring with p elements, where p is prime. a)Show that as an additive group (ignoring multiplication), S is cyclic. b)Show that S is a commutative group.
Let G be a group and let p be a prime number such that pg =...
Let G be a group and let p be a prime number such that pg = 0 for every element g ∈ G. a.      If G is commutative under multiplication, show that the mapping f : G → G f(x) = xp is a homomorphism b.     If G is an Abelian group under addition, show that the mapping f : G → G f(x) = xpis a homomorphism.
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
Let p be prime. Show that the equation x^2 is congruent to 1(mod p) has just...
Let p be prime. Show that the equation x^2 is congruent to 1(mod p) has just two solutions in Zp (the set of integers). We cannot use groups.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT