Question

first use Gram-Schmidt on x1, x2 to create orthogonal vectors v1 and v2 with the same...

first use Gram-Schmidt on x1, x2 to create orthogonal vectors v1 and v2 with the same span as x1, x2. Now use the formula

p =((y, v1)/(v1, v1))v1 + ((y, v2)/(v2, v2))v2

to compute the projection of y onto that span. Of course, replace the inner product with the dot product when working with standard vectors

2)

Compute the projection of y = (1, 2, 2, 2, 1)  onto span (x1, x2) where

x1 =(1, 1, 1, 1, 1)   x2 =(4, 1, 0, 1, 4)

The inner product to use is the usual dot product. (This will compute a best-fitting function that is quadratic with no linear term, fitting to the data (−2, 1),(−1, 2),(0, 2),(1, 2),(2, 1).)

Homework Answers

Answer #1

Which is required projection

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
first use Gram-Schmidt on x1, x2 to create orthogonal vectors v1 and v2 with the same...
first use Gram-Schmidt on x1, x2 to create orthogonal vectors v1 and v2 with the same span as x1, x2. Now use the formula p =((y, v1)/(v1, v1))v1 + ((y, v2)/(v2, v2))v2 to compute the projection of y onto that span. Of course, replace the inner product with the dot product when working with standard vectors 1) Compute the projection of y = (1, 2, 3)  onto span (x1, x2) where x1 =(1, 1, 1) x2 =(1, 0, 1) The inner...
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1,...
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1, v2 and v3. u = (3, 4, 2, 4) ; v1 = (3, 2, 3, 0), v2 = (-8, 3, 6, 3), v3 = (6, 3, -8, 3) Let (x, y, z, w) denote the orthogonal projection of u onto the given subspace. Then, the components of the target orthogonal projection are
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1,...
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1, x2) ? R^2. Show that (x2, ?x1) is orthogonal to v. b. Find all vectors (x, y, z) ? R^3 that are orthogonal (with the Euclidean inner product, i.e. dot product) to both (1, 3, ?2) and (2, 7, 5). C.Let V be an inner product space. Suppose u is orthogonal to both v and w. Prove that for any scalars c and d,...
Exercise 6. Consider the following vectors in R3 . v1 = (1, −1, 0) v2 =...
Exercise 6. Consider the following vectors in R3 . v1 = (1, −1, 0) v2 = (3, 2, −1) v3 = (3, 5, −2 )   (a) Verify that the general vector u = (x, y, z) can be written as a linear combination of v1, v2, and v3. (Hint : The coefficients will be expressed as functions of the entries x, y and z of u.) Note : This shows that Span{v1, v2, v3} = R3 . (b) Can R3 be...
Do the vectors v1 =   1 2 3   , v2 = ...
Do the vectors v1 =   1 2 3   , v2 =   √ 3 √ 3 √ 3   , v3   √ 3 √ 5 √ 7   , v4 =   1 0 0   form a basis for R 3 ? Why or why not? (b) Let V ⊂ R 4 be the subspace spanned by the vectors a1 and a2, where a1 =   ...
(a) Do the vectors v1 = 1 2 3 , v2 = √ 3 √ 3...
(a) Do the vectors v1 = 1 2 3 , v2 = √ 3 √ 3 √ 3 , v3=√ 3 √ 5 √ 7, v4 = 1 0 0 form a basis for R 3 ? Why or why not? (b) Let V ⊂ R 4 be the subspace spanned by the vectors a1 and a2, where a1 = (1 0 −1 0) , a2 = 0 1 0 −1. Find a basis for the orthogonal complement V ⊥...
Use the inner product (u, v) = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization...
Use the inner product (u, v) = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization process to transform {(?2, 1), (2, 5)} into an orthonormal basis. (Use the vectors in the order in which they are given.) u1 = ___________ u2 = ___________
Use the inner product <u,v>= 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization process to...
Use the inner product <u,v>= 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization process to transform {(2, ?1), (2, 6)} into an orthonormal basis. (Use the vectors in the order in which they are given.) u1 = u2 =
Which of the following vectors are unit vectors with respect to the inner product: <(x1, x2,...
Which of the following vectors are unit vectors with respect to the inner product: <(x1, x2, x3) , (y1, y2, y3)> = 2x1y1 = 2x3y3 in R3? A. (1, 0, 0)   B. (1, 0, 0)/sqrt(2)   C. (1, 0, 1)/sqrt(2)    D. (1, 1, 0)/2 Select from the following: 1. Only A 2. Only B and D 3. Only A and C 4. All of A, B, C and D 5. None of the above Thank you!
1) Consider two vectors A=[20, 4, -6] and B=[8, -2, 6]. a) compute their dot product...
1) Consider two vectors A=[20, 4, -6] and B=[8, -2, 6]. a) compute their dot product A.B b) Compute the angle between the two vectors.    c)Find length and sign of component of A over B (mean Comp A over B)and draw its diagram.    d) Compute Vector projection of B over A (means Proj B over A) and draw corresponding diagram. e) Compute Orthogonal projection of A onto B.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT