Question

Please solve the following: ut=kuxx+sin3πx, 0<x<1, t>0 u(0,t)=u(1,t)=0, t>0 u(x,0)=sinπx, 0<x<1

Please solve the following:

ut=kuxx+sin3πx, 0<x<1, t>0

u(0,t)=u(1,t)=0, t>0

u(x,0)=sinπx, 0<x<1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t)...
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t) = u(3,t) = 1 - u(x,0) = 0 Please write clearly and explain your reasoning.
uxx = ut - u (0<x<1, t>0), boundary conditions: u(1,t)=cost, u(0,t)= 0 initial conditions: u(x,0)= x...
uxx = ut - u (0<x<1, t>0), boundary conditions: u(1,t)=cost, u(0,t)= 0 initial conditions: u(x,0)= x i) solve this problem by using the method of separation of variables. (Please, share the solution step by step) ii) graphically present two terms(binomial) solutions for u(x,1).
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2,...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2, where T1 and T2 are distinct constants, and u(x,0)=0
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) =...
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) = 0 u(x, 0) = x − x ^3 (Provide all the details of separation of variables as well as the needed Fourier expansions.)
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0)...
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0) = sin2x, 0<x<pi
Solve heat equation for the following conditions ut = kuxx t > 0, 0 < x...
Solve heat equation for the following conditions ut = kuxx t > 0, 0 < x < ∞ u|t=0 = g(x) ux|x=0 = h(t) 2. g(x) = 1 if x < 1 and 0 if x ≥ 1 h(t) = 0; for k = 1/2
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3....
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3. u(x,0) = 1-2x 0<x<pi
We have the Problem: utt-c2uxx=0,x>=0,t>=0 u(x,0)=g(x),x>=0 ut(x,0)=h(x),x>=0 ut(0,t)=αux(0,t),t>=0 u(x,t)=?
We have the Problem: utt-c2uxx=0,x>=0,t>=0 u(x,0)=g(x),x>=0 ut(x,0)=h(x),x>=0 ut(0,t)=αux(0,t),t>=0 u(x,t)=?
Solve the heat equation ut = k uxx, 0 < x < L, t > 0...
Solve the heat equation ut = k uxx, 0 < x < L, t > 0 u(0, t) = u(L, t) = 0, t > 0 u(x, 0) = f(x), 0 < x < L a) f(x) = 6 sin 9πx L b) f(x) = 1 if 0 < x ≤ L/2 2 if L/2 < x < L
Let U(x,t) be the solution of the IBVP: Utt=4Uxx, x>0, t>0 ICs: U(x,0) = x, Ut(x,0)...
Let U(x,t) be the solution of the IBVP: Utt=4Uxx, x>0, t>0 ICs: U(x,0) = x, Ut(x,0) = 0, x>0 BCs: Ux(0,t) = 0 Find U(4,1) and U(1,2)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT