Question

Define X = {0, 1} and T = {∅, {0}, X} . (a) Is X with...

Define X = {0, 1} and T = {∅, {0}, X} .

(a) Is X with topology T connected? (Hint: Use the clopen definition.)

(b) Is X with topology T path-connected? (Hint: Construct continuous map f ∶ R → X. One way is to ensure f −1({0}) = (−∞, 0). Once you have f, consider f([a, b])—like f([−1, 1]) if you take my suggestion. Use the definition of path connected. )

Homework Answers

Answer #1

as inverse image of open set is open so f is contineous

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If f is a continuous, positive function defined on the interval (0, 1] such that limx→0+...
If f is a continuous, positive function defined on the interval (0, 1] such that limx→0+ = ∞ we have seen how to make sense of the area of the infinite region bounded by the graph of f, the x-axis and the vertical lines x = 0 and x = 1 with the definition of the improper integral. Consider the function f(x) = x sin(1/x) defined on (0, 1] and note that f is not defined at 0. • Would...
Let F(x, y, z) = (yz, xz, xy) and the path c(t) = (cos3 t,sin3 t,...
Let F(x, y, z) = (yz, xz, xy) and the path c(t) = (cos3 t,sin3 t, 0) for 0 ≤ t ≤ 2π. Evaluate R c F · ds. Hint: Identify f such that ∇f = F.
Consider ℝ with the standard topology and the map f : ℝ → {–1, 0, 1}...
Consider ℝ with the standard topology and the map f : ℝ → {–1, 0, 1} defined by: f(x) = {–1 when x > 10; 0 when –10 ≤ x ≤ 10; and 1 when x < –10}. Select each and every set that is an open sets in the quotient topology on {–1, 0, 1} (there are 3 out of 5). A. {–1,0,1} B. {0} C. {0,1} D. {–1} E. {–1,1} This is all that I have. This question...
1. Let W be the set of all [x y z}^t in R^3 such that xyz...
1. Let W be the set of all [x y z}^t in R^3 such that xyz = 0. Is W a subspace of R^3? 2. Let C^0 (R) denote the space of all continuous real-valued functions f(x) of x in R. Let W be the set of all continuous functions f(x) such that f(1) = 0. Is W a subspace of C^0(R)?
a. Let →u = (x, y, z) ∈ R^3 and define T : R^3 → R^3...
a. Let →u = (x, y, z) ∈ R^3 and define T : R^3 → R^3 as T( →u ) = T(x, y, z) = (x + y, 2z − y, x − z) Find the standard matrix for T and decide whether the map T is invertible. If yes then find the inverse transformation, if no, then explain why. b. Let (x, y, z) ∈ R^3 be given T : R^3 → R^2 by T(x, y, z) = (x...
Define T : P2 → R3 via T(a+bx+cx2) = (a+c,c,b−c), and let B = {1,x,x2} and...
Define T : P2 → R3 via T(a+bx+cx2) = (a+c,c,b−c), and let B = {1,x,x2} and D ={(1, 0, 0), (0, 1, 0), (0, 0, 1)}. (a) Find MDB(T) and show that it is invertible. (b) Use the fact that MBD(T−1) = (MDB(T))−1 to find T−1. Hint: A linear transformation is completely determined by its action on any spanning set and hence on any basis.
(b) Define f : R → R by f(x) := x 2 sin 1 x for...
(b) Define f : R → R by f(x) := x 2 sin 1 x for x 6= 0, and f(x) = 0 for x = 0. Does f 0 (0) exist? Prove your claim.
Let T : P(R) → P(R) be the linear map defined by T(p(x)) = xp′(x) (you...
Let T : P(R) → P(R) be the linear map defined by T(p(x)) = xp′(x) (you may take it for granted that T is linear). Show that for each λ ∈ Z with λ ≥ 0, λ is an eigenvalue of T , and xλ is a corresponding eigenvector.
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x...
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x for 0≤x≤ π. if you like, you can use/cite the solution of Fourier sine series of sin^2(x) on [0,pi] = 1/4-(1/4)cos(2x) please show all steps and work clearly so I can follow your logic and learn to solve similar ones myself.
Given f(x) = ( c(x + 1) if 1 < x < 3 0 else as...
Given f(x) = ( c(x + 1) if 1 < x < 3 0 else as a probability function for a continuous random variable; find a. c. b. The moment generating function MX(t). c. Use MX(t) to find the variance and the standard deviation of X.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT