Question

3. Let P = (a cos θ, b sin θ), where θ is not a multiple...

3. Let P = (a cos θ, b sin θ), where θ is not a multiple of π/2 be a point on the ellipse (x 2/ a2 )+ (y 2/ b 2) = 1, where a ≥ b > 0; and let P1 = (a cos θ, a sin θ) the corresponding on the circle x 2 /a2 + y 2/ a2 = 1. Prove that the tangent to the ellipse at P and the tangent to the circle at P1 meet on the x-axis.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin...
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin θ sin φ, z = cos φ where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Hint: Find an equation of the form F(x, y, z) = 0 for this surface by eliminating θ and φ from the equations above. (b) Calculate a parametrization for the tangent plane to the surface at (θ, φ) = (π/3, π/4).
Find the equation of the tangent line to the curve r = 2 sin ⁡ θ...
Find the equation of the tangent line to the curve r = 2 sin ⁡ θ + cos ⁡ θ at the point ( x 0 , y 0 ) = ( − 1 , 3 )
Assume sin(θ)=19/36 where π2<θ<π, and cos(ϕ)=−11/38 where π<ϕ<3π/2. Use sum or difference formula to compute: sin(θ...
Assume sin(θ)=19/36 where π2<θ<π, and cos(ϕ)=−11/38 where π<ϕ<3π/2. Use sum or difference formula to compute: sin(θ +ϕ)= sin(θ -ϕ)= cos(θ +ϕ) cos(θ -ϕ)=
Let Θ ∼ Unif.([0, 2π]) and consider X = cos(Θ) and Y = sin(Θ). Can you...
Let Θ ∼ Unif.([0, 2π]) and consider X = cos(Θ) and Y = sin(Θ). Can you find E[X], E[Y], and E[XY]? clearly, x and y are not independent I think E[X] = E[Y] = 0 but how do you find E[XY]?
1) Find the values of the trigonometric functions of θ from the information given. cot(θ) =...
1) Find the values of the trigonometric functions of θ from the information given. cot(θ) = − 3/5, cos(θ) > 0 sin(θ) = cos(θ) = tan(θ) = csc(θ) = sec(θ) = 2) The point P is on the unit circle. Find P(x, y) from the given information. The x-coordinate of P is −√5/4, and P lies below the x-axis. P(x, y) = ( ) 3) Find the terminal point P(x, y)  on the unit circle determined by the given value of...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y =...
4) Consider the polar curve r=e2theta a) Find the parametric equations x = f(θ), y = g(θ) for this curve. b) Find the slope of the line tangent to this curve when θ=π. 6) a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the...
For r = f(θ) = sin(θ)−1 (A) Find the area contained within f(θ). (B) Find the...
For r = f(θ) = sin(θ)−1 (A) Find the area contained within f(θ). (B) Find the slope of the tangent line to f(θ) at θ = 0 ,π,3π/2 .
Let c(t) = (t^2, t sin(π t), t cos(π t)). Find the intersection point of the...
Let c(t) = (t^2, t sin(π t), t cos(π t)). Find the intersection point of the tangent line to c at t = 3 with the yz-plane?
Find f. f ''(θ) = sin(θ) + cos(θ), f(0) = 3, f '(0) = 2
Find f. f ''(θ) = sin(θ) + cos(θ), f(0) = 3, f '(0) = 2
Consider the linear system x' = x cos a − y sin a y'= x sin...
Consider the linear system x' = x cos a − y sin a y'= x sin a + y cos a where a is a parameter. Show that as a ranges over [0, π], the equilibrium point at the origin passes through the sequence stable node, stable spiral, center, unstable spiral, unstable node.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT