Question

Determine if each of the following statements is true or false. If it’s true, explain why....

Determine if each of the following statements is true or false. If it’s true, explain why. If it’s false explain why not, or simply give an example demonstrating why it’s false

(a) If λ=0 is not an eigenvalue of A, then the columns of A fo ma basis of R^n.

(b) If u, v ∈ R^3 are orthogonal, then the set {u, u − 3v} is orthogonal.

(c) If S1 is an orthogonal set and S2 is an orthogonal set with S1 ∩S2 = φ, then S1 ∪S2 is an orthogonal set.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine if each of the following statements is true or false. If it’s true, explain why....
Determine if each of the following statements is true or false. If it’s true, explain why. If it’s false explain why not, or simply give an example demonstrating why it’s false. (A correct choice of “T/F” with no explanation will not receive any credit.) (a) If two lines are contained in the same plane, then they must intersect. (c) Let n1 and n2 be normal vectors for two planes P1, P2. If n1 and n2 are orthogonal, then the planes...
Give an counter example or explain why those are false a) every linearly independent subset of...
Give an counter example or explain why those are false a) every linearly independent subset of a vector space V is a basis for V b) If S is a finite set of vectors of a vector space V and v ⊄span{S}, then S U{v} is linearly independent c) Given two sets of vectors S1 and S2, if span(S1) =Span(S2), then S1=S2 d) Every linearly dependent set contains the zero vector
For each of the following short statements, explain whether it is True or False. If it’s...
For each of the following short statements, explain whether it is True or False. If it’s true, explain why. If it’s false, give a counter-examples or explain why it’s false. (a) (b) (c) (5 points) Suppose in a game a player has three decision nodes, with three possible actions at each node: A,B and C. The player has fewer strategies in a version of the game where C end the game, than in another version of the game where C...
(6) Label each of the following statements as True or False. Provide justification for your response....
(6) Label each of the following statements as True or False. Provide justification for your response. (b) True/False The scalar λ is an eigenvalue of a square matrix A if and only if the equation (A − λIn)x = 0 has a nontrivial solution. (c) True/False If λ is an eigenvalue of a matrix A, then there is only one nonzero vector v with Av = λv. (d) True/False The eigenspace of an eigenvalue of an n × n matrix...
Decide if each of the following statements are true or false. If a statement is true,...
Decide if each of the following statements are true or false. If a statement is true, explain why it is true. If the statement is false, give an example showing that it is false. (a) Let A be an n x n matrix. One root of its characteristic polynomial is 4. The dimension of the eigenspace corresponding to the eigenvalue 4 is at least 1. (b) Let A be an n x n matrix. A is not invertible if and...
Answer all of the questions true or false: 1. a) If one row in an echelon...
Answer all of the questions true or false: 1. a) If one row in an echelon form for an augmented matrix is [0 0 5 0 0] b) A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax=b has at least one solution. c) The solution set of b is the set of all vectors of the form u = + p + vh where vh is any solution...
Determine if the following statements are true or false. If it is true, explain why. If...
Determine if the following statements are true or false. If it is true, explain why. If it is false, provide an example. a.) If a and b are positive numbers, then (a+b)^x=a^x+b^x b.) If x < y, then e^x < e^y c.) If 0 < b <1 and x < y then b^x > b^y d.) if e^(kx) > 1, then k > 0 and x >0
Deside whether the statements below are true or false. If true, explain why true. If false,...
Deside whether the statements below are true or false. If true, explain why true. If false, give a counterexample. (a) If a square matrix A has a row of zeros, then A is not invertible. (b) If a square matrix A has all 1s down the main diagonal, then A is invertible. (c) If A is invertible, then A−1 is invertible. (d) If AT is invertible, then A is invertible.
Are the following statements true or false? Please explain why it's true or false as well....
Are the following statements true or false? Please explain why it's true or false as well. For a normally distributed random variable, P(X > µ) = .5 Independent variables may be linearly related
Determine whether the following statements are true or false. If the statement is false, then explain...
Determine whether the following statements are true or false. If the statement is false, then explain why the statement is false or rewrite the statement so that it is true. If a scatterplot shows a linear association between two numerical variables, then a correlation coefficient that is close to 1 indicates a strong positive trend and a correlation coefficient that is close to 0 indicates a strong negative trend.