Question

Suppose u, and v are vectors in R m, such that ∥u∥ = 1, ∥v∥ =...

Suppose u, and v are vectors in R m, such that ∥u∥ = 1, ∥v∥ = 4, ∥u + v∥ = 5. Find the inner product 〈u, v〉.

(b) Suppose {a1, · · · ak} are orthonormal vectors in R m.

Show that {a1, · · · ak} is a linearly independent set

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that u and v are two non-orthogonal vectors in an inner product space V,< ,...
Suppose that u and v are two non-orthogonal vectors in an inner product space V,< , >. Question 2: Can we modify the inner product < , > to a new inner product so that the two vectors become orthogonal? Justify your answer.
Enlarge the following set to linearly independent vectors to orthonormal bases of R^3 and R^4 {(1,1,1)^t,...
Enlarge the following set to linearly independent vectors to orthonormal bases of R^3 and R^4 {(1,1,1)^t, (1,1,2)^t} could you show me the process, please
Let (u,v,w,t) be a linearly independent list of vectors in R4. Determine if (u, v-u, w+5v,...
Let (u,v,w,t) be a linearly independent list of vectors in R4. Determine if (u, v-u, w+5v, t) is a linearly independent list. Explain your reasoning and Show work.
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1,...
3. a. Consider R^2 with the Euclidean inner product (i.e. dot product). Let v = (x1, x2) ? R^2. Show that (x2, ?x1) is orthogonal to v. b. Find all vectors (x, y, z) ? R^3 that are orthogonal (with the Euclidean inner product, i.e. dot product) to both (1, 3, ?2) and (2, 7, 5). C.Let V be an inner product space. Suppose u is orthogonal to both v and w. Prove that for any scalars c and d,...
Let T be a linear transformation that is one-to-one, and u, v be two vectors that...
Let T be a linear transformation that is one-to-one, and u, v be two vectors that are linearly independent. Is it true that the image vectors T(u), T(v) are linearly independent? Explain why or why not.
Suppose u = (u1,u2) and v = (v1, v2) are two vectors in R2. Explain why...
Suppose u = (u1,u2) and v = (v1, v2) are two vectors in R2. Explain why the operations (u * v) = u1v2 cannot be an inner product.
5. a) Suppose that the area of the parallelogram spanned by the vectors ~u and ~v...
5. a) Suppose that the area of the parallelogram spanned by the vectors ~u and ~v is 10. What is the area of the parallogram spanned by the vectors 2~u + 3~v and −3~u + 4~v ? (b) Given (~u × ~v) · ~w = 10. What is ((~u + ~v) × (~v + ~w)) · ( ~w + ~u)? [4] 6. Find an equation of the plane that is perpendicular to the plane x + 2y + 4 =...
Use the inner product (u, v) = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization...
Use the inner product (u, v) = 2u1v1 + u2v2 in R2 and the Gram-Schmidt orthonormalization process to transform {(?2, 1), (2, 5)} into an orthonormal basis. (Use the vectors in the order in which they are given.) u1 = ___________ u2 = ___________
Suppose 〈 , 〉 is an inner product on a vector space V . Show that...
Suppose 〈 , 〉 is an inner product on a vector space V . Show that no vectors u and v exist such that ∥u∥ = 1, ∥v∥ = 2, and 〈u, v〉 = −3.
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be...
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be a set of inner products on V that is (when viewed as a subset of B(V)) linearly independent. Prove that S must be finite e) Exhibit an infinite linearly independent set of inner products on R(x), the vector space of all polynomials with real coefficients.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT