Question

Express the function f(x)= (1 if 0⩽x<π, sin2x π⩽x<2π and e^−x x⩾2π) . In terms of...

Express the function f(x)= (1 if 0⩽x<π, sin2x π⩽x<2π and e^−x x⩾2π) . In terms of the unit step functions.

Homework Answers

Answer #1

Please feel free to ask any query in the comment box and don't forget to rate if you like

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the value of C > 0 such that the function ?C sin2x, if0≤x≤π, f(x) =...
Find the value of C > 0 such that the function ?C sin2x, if0≤x≤π, f(x) = 0, otherwise is a probability density function. Hint: Remember that sin2 x = 12 (1 − cos 2x). 2. Suppose that a continuous random variable X has probability density function given by the above f(x), where C > 0 is the value you computed in the previous exercise. Compute E(X). Hint: Use integration by parts! 3. Compute E(cos(X)). Hint: Use integration by substitution!
Use the laplace transform to solve the given function f(t) = {0, t<π t-π, π ≤...
Use the laplace transform to solve the given function f(t) = {0, t<π t-π, π ≤ t<2π 0, 2π ≤t} Using the unit step function Uc(t)
find the local extrema of hte function f(x)= sin2x on [0,pi]
find the local extrema of hte function f(x)= sin2x on [0,pi]
Calculate the Fourier series expansion of the function: f(x) =1/2(π-x) , when 0 < x ≤...
Calculate the Fourier series expansion of the function: f(x) =1/2(π-x) , when 0 < x ≤ π   and f(x) = - 1/2(π+x), when -π ≤ x < 0
Function f (x) = e4x for 0< x < π and                                 = 0    for...
Function f (x) = e4x for 0< x < π and                                 = 0    for other x    Determinated Transformation Fourier
Compute the complex Fourier series of the function f(x)= 0 if − π < x <...
Compute the complex Fourier series of the function f(x)= 0 if − π < x < 0, 1 if 0 ≤ x < π on the interval [−π, π]. To what value does the complex Fourier series converge at x = 0?
Given the function f(x) =cosh(x) with period of 2π , determine its Fourier series for interval...
Given the function f(x) =cosh(x) with period of 2π , determine its Fourier series for interval of (-π, π) ( Please write clearly :) )
Consider f(x)=sinx, 0 ≤x≤π a) Express double expansion of f(x) with a formula. b) Find expansion...
Consider f(x)=sinx, 0 ≤x≤π a) Express double expansion of f(x) with a formula. b) Find expansion to Fourier series of f(x).
Expand the given function in an appropriate cosine or sine series. f(x) = π, −1 <...
Expand the given function in an appropriate cosine or sine series. f(x) = π, −1 < x < 0 −π,    0 ≤ x < 1
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if...
1.Find ff if f′′(x)=2+cos(x),f(0)=−7,f(π/2)=7.f″(x)=2+cos⁡(x),f(0)=−7,f(π/2)=7. f(x)= 2.Find f if f′(x)=2cos(x)+sec2(x),−π/2<x<π/2,f′(x)=2cos⁡(x)+sec2⁡(x),−π/2<x<π/2, and f(π/3)=2.f(π/3)=2. f(x)= 3. Find ff if f′′(t)=2et+3sin(t),f(0)=−8,f(π)=−9. f(t)= 4. Find the most general antiderivative of f(x)=6ex+9sec2(x),f(x)=6ex+9sec2⁡(x), where −π2<x<π2. f(x)= 5. Find the antiderivative FF of f(x)=4−3(1+x2)−1f(x)=4−3(1+x2)−1 that satisfies F(1)=8. f(x)= 6. Find ff if f′(x)=4/sqrt(1−x2)  and f(1/2)=−9.