Question

Laplace Transform of y"+3y'+2y=0 , y(2)=1 , y'(0)=0

Laplace Transform of y"+3y'+2y=0 , y(2)=1 , y'(0)=0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
y''+2y'-3y=0 y(2)= -3 y'(2)= -5 note shifted data IVP SOLVE THE IVPs by laplace transform
y''+2y'-3y=0 y(2)= -3 y'(2)= -5 note shifted data IVP SOLVE THE IVPs by laplace transform
Use Laplace transform to solve IVP 2y”+2y’+y=2t , y(0)=1 , y’(0)=-1
Use Laplace transform to solve IVP 2y”+2y’+y=2t , y(0)=1 , y’(0)=-1
Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
Solve the system by Laplace Transform: x'=x-2y y'=5x-y x(0)=-1, y(0)=2
Laplace transform y' +3y=1; y(0)=-1 and y''+4y=16t; y(0)=3, y'(0)=-6
Laplace transform y' +3y=1; y(0)=-1 and y''+4y=16t; y(0)=3, y'(0)=-6
Given the second order initial value problem y′′−3y′=12δ(t−2),  y(0)=0,  y′(0)=3y″−3y′=12δ(t−2),  y(0)=0,  y′(0)=3Let Y(s)Y(s) denote the Laplace transform of yy. Then...
Given the second order initial value problem y′′−3y′=12δ(t−2),  y(0)=0,  y′(0)=3y″−3y′=12δ(t−2),  y(0)=0,  y′(0)=3Let Y(s)Y(s) denote the Laplace transform of yy. Then Y(s)=Y(s)=  . Taking the inverse Laplace transform we obtain y(t)=
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-t , y(0)=0 , y'(0)=1
y^''-y^'-2y= e^t , y(0)=0 and y^'(0)=1 Solve by using laplace transform
y^''-y^'-2y= e^t , y(0)=0 and y^'(0)=1 Solve by using laplace transform
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is...
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is the Dirac delta function.
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now...
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now solve the IVP by using the inverse Laplace Transform y(t)=L^−1{Y(s)} y(t) =
solve using Laplace transformation y"+2y'+3y=1 for y(0)=7 and y'=-4
solve using Laplace transformation y"+2y'+3y=1 for y(0)=7 and y'=-4