Question

6. Let S be a finite set and let P(S) denote the set of all subsets...

6. Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A ⊆ B.

(a) Is this relation reflexive? Explain your reasoning.

(b) Is this relation symmetric? Explain your reasoning.

(c) Is this relation transitive? Explain your reasoning.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S be a finite set and let P(S) denote the set of all subsets of...
Let S be a finite set and let P(S) denote the set of all subsets of S. Define a relation on P(S) by declaring that two subsets A and B are related if A and B have the same number of elements. (a) Prove that this is an equivalence relation. b) Determine the equivalence classes. c) Determine the number of elements in each equivalence class.
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let A = {1,2,3,4,5} and X = P(A) be its powerset. Define a binary relation on...
Let A = {1,2,3,4,5} and X = P(A) be its powerset. Define a binary relation on X by for any sets S, T ∈ X, S∼T if and only if S ⊆ T. (a) Is this relation reflexive? (b) Is this relation symmetric or antisymmetric? (c) Is this relation transitive?
Let S1 and S2 be any two equivalence relations on some set A, where A ≠...
Let S1 and S2 be any two equivalence relations on some set A, where A ≠ ∅. Recall that S1 and S2 are each a subset of A×A. Prove or disprove (all three): The relation S defined by S=S1∪S2 is (a) reflexive (b) symmetric (c) transitive
Let S1 and S2 be any two equivalence relations on some set A, where A ≠...
Let S1 and S2 be any two equivalence relations on some set A, where A ≠ ∅. Recall that S1 and S2 are each a subset of A×A. Prove or disprove (all three): The relation S defined by S=S1∪S2 is (a) reflexive (b) symmetric (c) transitive
Suppose we define the relation R on the set of all people by the rule "a...
Suppose we define the relation R on the set of all people by the rule "a R b if and only if a is Facebook friends with b." Is this relation reflexive?  Is is symmetric?   Is it transitive?   Is it an equivalence relation? Briefly but clearly justify your answers.
Let A be the set of all lines in the plane. Let the relation R be...
Let A be the set of all lines in the plane. Let the relation R be defined as: “l​1​ R l​2​ ⬄ l​1​ intersects l​2​.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must give a counterexample.
2. Let A, B, C be subsets of a universe U. Let R ⊆ A ×...
2. Let A, B, C be subsets of a universe U. Let R ⊆ A × A and S ⊆ A × A be binary relations on A. i. If R is transitive, then R−1 is transitive. ii. If R is reflexive or S is reflexive, then R ∪ S is reflexive. iii. If R is a function, then S ◦ R is a function. iv. If S ◦ R is a function, then R is a function
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT