Question

Let n be a positive integer. Show that every abelian group of order n is cyclic...

Let n be a positive integer. Show that every abelian group of order n is cyclic if and only if n is not divisible by the square of any prime.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If n is a square-free integer, prove that an abelian group of order n is cyclic.
If n is a square-free integer, prove that an abelian group of order n is cyclic.
Let G be a finite Abelian group and let n be a positive divisor of|G|. Show...
Let G be a finite Abelian group and let n be a positive divisor of|G|. Show that G has a subgroup of order n.
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a...
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a positive integer. How many subgroups of order m does G have? Prove your assertion.
12.29 Let p be a prime. Show that a cyclic group of order p has exactly...
12.29 Let p be a prime. Show that a cyclic group of order p has exactly p−1 automorphisms
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
For any prime number p use Lagrange's theorem to show that every group of order p...
For any prime number p use Lagrange's theorem to show that every group of order p is cyclic (so it is isomorphic to Zp
Let p be a prime. Show that a group of order pa has a normal subgroup...
Let p be a prime. Show that a group of order pa has a normal subgroup of order pb for every nonnegative integer b ≤ a.
Let n be an integer greater than 2. Prove that every subgroup of Dn with odd...
Let n be an integer greater than 2. Prove that every subgroup of Dn with odd order is cyclic.
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)|...
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)| = p. (b) Suppose a /∈ Z(G). Show that |NG(a)| = p^2 . (c) Show that G has exactly p 2 +p−1 conjugacy classes (don’t forget to count the classes of the elements of Z(G)).
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is...
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is not a prime number, then n is divisible by an integer x with 1 < x ≤√n. [Note: An integer m is divisible by another integer n if there exists a third integer k such that m = nk. This is just a formal way of saying that m is divisible by n if m n is an integer.]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT