Question

y'' +3y= t y'(0)=0 y'(pi) = 0 solve with fourier series

y'' +3y= t
y'(0)=0
y'(pi) = 0
solve with fourier series

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sinxcosx, ut(x,0) = x(pi - x)
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi,...
Solve the following wave equation using Fourier Series a2uxx = utt, 0 < x < pi, t > 0, u(0,t) = 0 = u(pi,t), u(x,0) = sin2x - sin3x, ut(x,0) = 0
f(t) is defined on (-pi,pi] as t^3 Extend periodically and compute the fourier series.
f(t) is defined on (-pi,pi] as t^3 Extend periodically and compute the fourier series.
solve y''-3y'+2y=0 using power series please
solve y''-3y'+2y=0 using power series please
Solve y''+3y'+2y=Delta(t-1)+t^13*Delta(t-0) y(0)=0,y''(0)=0
Solve y''+3y'+2y=Delta(t-1)+t^13*Delta(t-0) y(0)=0,y''(0)=0
Find the Fourier series of the function: f(x) = {0, -pi < x < 0 {1,...
Find the Fourier series of the function: f(x) = {0, -pi < x < 0 {1, 0 <= x < pi
Solve the initial value problem 3y'(t)y''(t)=16y(t) , y(0)=1, y'(0)=2
Solve the initial value problem 3y'(t)y''(t)=16y(t) , y(0)=1, y'(0)=2
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
Solve y'-3y=2e^t y(0)=e^3-e using Laplace transform.
Solve y'-3y=2e^t y(0)=e^3-e using Laplace transform.
(PDE Use the method of separation of variables and Fourier series to solve where m is...
(PDE Use the method of separation of variables and Fourier series to solve where m is a real constant And boundary value prob. Of Klein Gordon eqtn. Given : Utt - C^2 Uxx + m^2 U = 0 ,for 0 less than x less pi , t greater than 0 U (0,t) = u (pi,t) =0 for t greater than 0 U (x,0) = f (x) , Ut (x,0)= g (x) for 0 less than x less than pj
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT