Question

when a mass of 2 kg is attached to a spring whose constant is 32 N/m,...

when a mass of 2 kg is attached to a spring whose constant is 32 N/m, it come to rest in the equilibrium position. at a starting time t=0, an external force of y=80e^(-4t)*cos(4t) is applied to the system. find the motion equation in the absence of damping.

Homework Answers

Answer #1

please upvote ???

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When a mass of 3 kilograms is attached to a spring whose constant is 48 N/m,...
When a mass of 3 kilograms is attached to a spring whose constant is 48 N/m, it comes to rest in the equilibrium position. Starting at t = 0, a force equal to f(t) = 51e−2t cos 4t  is applied to the system. Find the equation of motion in the absence of damping. x(t)= ?? m
a 3 kg mass is attached to a spring whose constant is 147 N/m, comes to...
a 3 kg mass is attached to a spring whose constant is 147 N/m, comes to rest in the equilibrium position. Starting at  t = 0, a force equal to  f (t)  =  12e−5t cos 2t  is applied to the system. In the absence of damping, (a) find the position of the mass when  t = π. (b) what is the amplitude of vibrations after a very long time?
A mass of 4 Kg attached to a spring whose constant is 20 N / m...
A mass of 4 Kg attached to a spring whose constant is 20 N / m is in equilibrium position. From t = 0 an external force, f (t) = et sin t, is applied to the system. Find the equation of motion if the mass moves in a medium that offers a resistance numerically equal to 8 times the instantaneous velocity. Draw the graph of the equation of movement in the interval.
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then...
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at t = 0, an external force equal to f(t) = 4 sin(4t) is applied to the system. Find the equation of motion if the surrounding medium offers a damping force that is numerically equal to 8 times the instantaneous velocity. (Use g = 32 ft/s2 for the acceleration due to gravity.) What is x(t) ?...
A body of mass equal to 4 kg is attached to a spring of constant k...
A body of mass equal to 4 kg is attached to a spring of constant k = 64 N / m. If an external force F (t) = 3/2 cos 4t is applied to the system, determine the position and speed of the body at all times; suppose that the mass was in position x (0) = 0.3 m and, at rest, at time t = 0 s
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for...
A 1/2 kg mass is attached to a spring with 20 N/m. The damping constant for the system is 6 N-sec/m. If the mass is moved 12/5 m to the left of equilibrium and given an initial rightward velocity of 62/5 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? y(t)= The damping factor is: The quasiperiod is: The quasifrequency is:
A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire...
A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 11 times the instantaneous velocity. Determine the equations of motion if the following is true. (a) the mass is initially released from rest from a point 1 meter below the equilibrium position x(t) = m (b) the mass is initially released from a point 1 meter below the equilibrium...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equation if (A) The weight is released 60 cm below the equilibrium position. x(t)= ; (B) The weight is released 60 cm below the equilibrium position with an upward velocity of 17 m/s. x(t)= ; Using the equation from part b, (C)...
A 1-kilogram mass is attached to a spring whose constant is 16 N / m, and...
A 1-kilogram mass is attached to a spring whose constant is 16 N / m, and then the entire system is immersed in a liquid that imparts a damping force equal to 10 times the instantaneous speed. Determine the equations of motion if the mass is initially released from a point 1 meter below the equilibrium position. differential equations
A 1/4​-kg mass is attached to a spring with stiffness 52 N/m. The damping constant for...
A 1/4​-kg mass is attached to a spring with stiffness 52 N/m. The damping constant for the system is 6 ​N-sec/m. If the mass is moved 3/4 m to the left of equilibrium and given an initial rightward velocity of 1 ​m/sec, determine the equation of motion of the mass y(t) = and give its damping​ factor, quasiperiod, and quasifrequency.