Question

If f:X→Y is a function and A⊆X, then define f(A) ={y∈Y:f(a) =y for some a∈A}. (a)...

If f:X→Y is a function and A⊆X, then define

f(A) ={y∈Y:f(a) =y for some a∈A}.

(a) If f:R→R is defined by f(x) =x^2, then find f({1,3,5}).

(b) If g:R→R is defined by g(x) = 2x+ 1, then find g(N).

(c) Suppose f:X→Y is a function. Prove that for all B, C⊆X,f(B∩C)⊆f(B)∩f(C). Then DISPROVE that for all B, C⊆X,f(B∩C) =f(B)∩f(C).

Homework Answers

Answer #1

Please upvote if you find this helpful !

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
X,Y be sets and f:X->Y is a function there's a function g:Y->X such that g(f(x))=x for...
X,Y be sets and f:X->Y is a function there's a function g:Y->X such that g(f(x))=x for all x∈X Prove or disprove: f is a bijection   
2. Define a function f : Z → Z × Z by f(x) = (x 2...
2. Define a function f : Z → Z × Z by f(x) = (x 2 , −x). (a) Find f(1), f(−7), and f(0). (b) Is f injective (one-to-one)? If so, prove it; if not, disprove with a counterexample. (c) Is f surjective (onto)? If so, prove it; if not, disprove with a counterexample.
1. A function f : Z → Z is defined by f(n) = 3n − 9....
1. A function f : Z → Z is defined by f(n) = 3n − 9. (a) Determine f(C), where C is the set of odd integers. (b) Determine f^−1 (D), where D = {6k : k ∈ Z}. 2. Two functions f : Z → Z and g : Z → Z are defined by f(n) = 2n^ 2+1 and g(n) = 1 − 2n. Find a formula for the function f ◦ g. 3. A function f :...
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
Consider the function f:R?R given by f(x,y)=(2-y,2-x). (b) Draw the triangle with vertices A = (1,...
Consider the function f:R?R given by f(x,y)=(2-y,2-x). (b) Draw the triangle with vertices A = (1, 2), B = (3, 1), C = (3, 2), and the triangle with vertices f(A),f(B),f(C). (c) Is f a rotation, a translation, or a glide reflection? Explain your answer.
1. For n exists in R, we define the function f by f(x)=x^n, x exists in...
1. For n exists in R, we define the function f by f(x)=x^n, x exists in (0,1), and f(x):=0 otherwise. For what value of n is f integrable? 2. For m exists in R, we define the function g by g(x)=x^m, x exists in (1,infinite), and g(x):=0 otherwise. For what value of m is g integrable?
If f:R→R satisfies f(x+y)=f(x) + f(y) for all x and y and 0∈C(f), then f is...
If f:R→R satisfies f(x+y)=f(x) + f(y) for all x and y and 0∈C(f), then f is continuous everywhere.
A function f”R n × R m → R is bilinear if for all x, y...
A function f”R n × R m → R is bilinear if for all x, y ∈ R n and all w, z ∈ R m, and all a ∈ R: • f(x + ay, z) = f(x, z) + af(y, z) • f(x, w + az) = f(x, w) + af(x, z) (a) Prove that if f is bilinear, then (0.1) lim (h,k)→(0,0) |f(h, k)| |(h, k)| = 0. (b) Prove that Df(a, b) · (h, k) = f(a,...
Let X=2N={x=(x1,x2,…):xi∈{0,1}} and define d(x,y)=2∑(i≥1)(3^−i)*|xi−yi|. Define f:X→[0,1] by f(x)=d(0,x), where 0=(0,0,0,…). Prove that maps X onto...
Let X=2N={x=(x1,x2,…):xi∈{0,1}} and define d(x,y)=2∑(i≥1)(3^−i)*|xi−yi|. Define f:X→[0,1] by f(x)=d(0,x), where 0=(0,0,0,…). Prove that maps X onto the Cantor set and satisfies (1/3)*d(x,y)≤|f(x)−f(y)|≤d(x,y) for x,y∈2N.
Suppose that f is a differentiable function and define g(x)=e^(2*f(x)+5x). Suppose that f(-2) = 1 and...
Suppose that f is a differentiable function and define g(x)=e^(2*f(x)+5x). Suppose that f(-2) = 1 and f ' (-2) = 2. Find g ' (-2).