Question

What are the equivalence classes for the relation congruence modulo 6? Please explain in detail.

What are the equivalence classes for the relation congruence modulo 6? Please explain in detail.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How...
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How many equivalence classes does it have? 9f) fix n ∈ ℕ. Prove that if a ≡ b mod n and c ≡ d mod n then a + c ≡b + d mod n. 9g) fix n ∈ ℕ.Prove that if a ≡ b mod n and c ≡ d mod n then ac ≡bd mod n.
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every...
Prove: Proposition 11.13. Congruence modulo n is an equivalence relation on Z : (1) For every a ∈ Z, a = a mod n. (2) If a = b mod n then b = a mod n. (3) If a = b mod n and b = c mod n, then a = c mod n
Please solve in full detail! Use the fact that Zp*, the nonzero residue classes modulo a...
Please solve in full detail! Use the fact that Zp*, the nonzero residue classes modulo a prime p, is a group under multiplication to establish Wilson’s Theorem.
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Abstract Algebra I Corollary 1.26- Two equivalence classes of an equivalence relation are either disjoint or...
Abstract Algebra I Corollary 1.26- Two equivalence classes of an equivalence relation are either disjoint or equal. Corollary 2.11- Let a and b be two integers that are relatively prime. Then there exist integers r and s such that ar+bs=1. PLEASE ANSWER THE FOLLOWING: 1) Why is Corollary 1.26 true? 2) Why is Corollary 2.11 true?
1. a. Consider the definition of relation. If A is the set of even numbers and...
1. a. Consider the definition of relation. If A is the set of even numbers and ≡ is the subset of ordered pairs (a,b) where a<b in the usual sense, is ≡ a relation? Explain. b. Consider the definition of partition on the bottom of page 18. Theorem 2 says that the equivalence classes of an equivalence relation form a partition of the set. Consider the set ℕ with the equivalence relation ≡ defined by the rule: a≡b in ℕ...
What is the advantage of financing with debt compared to equity? Please explain in detail.
What is the advantage of financing with debt compared to equity? Please explain in detail.
What is a model organism? How is Arabidopsis a good model? Please explain in detail.
What is a model organism? How is Arabidopsis a good model? Please explain in detail.
What is a Finite Population Correction Factor? Please explain its concept in detail
What is a Finite Population Correction Factor? Please explain its concept in detail
Let's say we have the following relation defined on the set {0, 1, 2, 3}: {...
Let's say we have the following relation defined on the set {0, 1, 2, 3}: { (0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3) } - Please answer the following 3 questions about this relation. (The relation will be repeated for each question.) Is this relation a function? Why or why not? - What are the three properties that must be present in an equivalence relation? Please give the names of the three properties...