Question

The functions f1(x) = x and f2(x) = x6 are orthogonal on [−4, 4]. Find constants...

The functions

f1(x) = x

and

f2(x) = x6

are orthogonal on

[−4, 4].

Find constants

C1

and

C2

such that

f3(x) = x + C1x2 + C2x3

is orthogonal to both

f1

and

f2

on the same interval.

Homework Answers

Answer #1

Hey mate!

I hope you understand all the steps.

If you still have any questions please let me know in comments.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following functions. f1(x) = x, f2(x) = x-1, f3(x) = x+4 g(x) = c1f1(x)...
Consider the following functions. f1(x) = x, f2(x) = x-1, f3(x) = x+4 g(x) = c1f1(x) + c2f2(x) + c3f3(x) Solve for c1, c2, and c3 so that g(x) = 0 on the interval (−∞, ∞). If a nontrivial solution exists, state it. (If only the trivial solution exists, enter the trivial solution {0, 0, 0}.) {c1, c2, c3} =?    Determine whether f1, f2, f3 are linearly independent on the interval (−∞, ∞). linearly dependent or linearly independent?  
Consider the following functions. f1(x) = x,   f2(x) = x2,   f3(x) = 6x − 4x2 g(x) = c1f1(x)...
Consider the following functions. f1(x) = x,   f2(x) = x2,   f3(x) = 6x − 4x2 g(x) = c1f1(x) + c2f2(x) + c3f3(x) Solve for c1, c2, and c3 so that g(x) = 0 on the interval (−∞, ∞). If a nontrivial solution exists, state it. (If only the trivial solution exists, enter the trivial solution {0, 0, 0}.) {c1, c2, c3} =      
Let f1, f2, f3: [a,b] -->R be nonnegative concave functions such that f1(a) = f2(a) =...
Let f1, f2, f3: [a,b] -->R be nonnegative concave functions such that f1(a) = f2(a) = f3(a) = f1(b) = f2(b) = f3(b) = 0. Suppose that max(f1) <= max(f2) <= max(f3). Prove that: max(f1) + max(f2) <= max(f1+f2+f3)
Determine if the set of functions is linearly independent: 1. f1(x)=cos2x, f2(x)=1, f3(x)=cos^2 x 2. f1(x)=e^...
Determine if the set of functions is linearly independent: 1. f1(x)=cos2x, f2(x)=1, f3(x)=cos^2 x 2. f1(x)=e^ x, f2(x)=e^-x, f3(x)=senhx
Consider the following predicate formulas. F1: ∀x ( P(x) → Q(x) ) F2: ∀x P(x) →...
Consider the following predicate formulas. F1: ∀x ( P(x) → Q(x) ) F2: ∀x P(x) → Q(x) F3: ∃x ( P(x) → Q(x) ) F4: ∃x P(x) → Q(x) For each of the following questions, answer Yes or No & Justify briefly . (a) Does F1 logically imply F2? (b) Does F1 logically imply F3? (c) Does F1 logically imply F4? (d) Does F2 logically imply F1?
Find the derivative of each function. (a) F1(x) = 3(x4 + 5)5 2 F1'(x) = (b)...
Find the derivative of each function. (a) F1(x) = 3(x4 + 5)5 2 F1'(x) = (b) F2(x) = 3 2(x4 + 5)5 F2'(x) = (c) F3(x) = (3x4 + 5)5 2 F3'(x) = (d) F4(x) = 3 (2x4 + 5)5
Determine whether the given functions are linearly dependent or linearly independent. f1(t) = 4t − 7,...
Determine whether the given functions are linearly dependent or linearly independent. f1(t) = 4t − 7, f2(t) = t2 + 1, f3(t) = 6t2 − t, f4(t) = t2 + t + 1 linearly dependentlinearly independent    If they are linearly dependent, find a linear relation among them. (Use f1 for f1(t), f2 for f2(t), f3 for f3(t), and f4 for f4(t). Enter your answer in terms of f1, f2, f3, and f4. If the system is independent, enter INDEPENDENT.)
For each of the following functions fi(x), (i) verify that they are legitimate probability density functions...
For each of the following functions fi(x), (i) verify that they are legitimate probability density functions (pdfs), and (ii) find the corresponding cumulative distribution functions (cdfs) Fi(t), for all t ? R. f1(x) = |x|, ? 1 ? x ? 1 f2(x) = 4xe ?2x , x > 0 f3(x) = 3e?3x , x > 0 f4(x) = 1 2? ? 4 ? x 2, ? 2 ? x ? 2.
Write a Matlab script that plots the following functions over 0 ≤ x ≤ 5π: f1(x)...
Write a Matlab script that plots the following functions over 0 ≤ x ≤ 5π: f1(x) = sin2 x − cos x, f2(x) = −0.1 x 3 + 2 x 2 + 10, f3(x) = e −x/π , f4(x) = sin(x) ln(x + 1). The plots should be in four separate frames, but all four frames should be in one figure window. To do this you can use the subplot command to create 2 × 2 subfigures.
In addition to NAND and NOR, find four more two-input boolean functions that are each individually...
In addition to NAND and NOR, find four more two-input boolean functions that are each individually universal. Give a logic expression for each of your functions, using AND, OR, and NOT, and prove that each of these functions is individually universal, by showing for example that you can implement AND, OR, and NOT with your function. You may use the constant values zero and one as inputs to your universal functions to implement other functions. Name your functions f1, f2,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT