Question

The output response, ?(?) of a feedback control system is given by: ?(?) = (? /...

The output response, ?(?) of a feedback control system is given by:
?(?) = (? / ?+? ) [?−?^−(?+?)?], where ? is a constant.
Determine:
a) The value of ?(3), taking ?=5. Give your answer accurate to 2d.p.


b) The inverse function ?−1(?), where ? is a constant.

Homework Answers

Answer #1

a)   

  when k=5

  

  

  correcting to 2 d.p,

    

b)   

Let

    

taking log on both sides,

  

  

where k is a constant and

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider an LTI system whose frequency response is undesirable; the distorting system function is given as:...
Consider an LTI system whose frequency response is undesirable; the distorting system function is given as: Hdz=(1-0.8ej0.4πz-1)(1-0.8e-j0.4πz-1)(1-1.5ej0.6πz-1)(1-1.5e-j0.6πz-1) Assume the distorting function is both causal and stable. Design and examine compensation system Hc(z) such that when a signal sn is transmitted through this communication channel then perfect compensation is achieved i.e. scn=sn. b)   Determine the impulse response h[n] by using the inverse Z transform. Hz=log1+az-1+2Z-5,             z>a c) For what value of a will be the impulse response both stable and causal?...
Objectives: Model a feedback position control system with Multisim. Study the behavior of the system as...
Objectives: Model a feedback position control system with Multisim. Study the behavior of the system as parameters are adjusted for different types of response. Design Requirements: A closed-loop control system is designed to allow an operator to set a reference angle and the inaccessible controlled element should turn by the same angle. A block diagram of the model is shown below. The gain in the feedback path is −1, and this forces to reach a final steady-state value equal to...
A) Can P-controlled firs order unity feedback system show oscillatory response to a step input? Explain...
A) Can P-controlled firs order unity feedback system show oscillatory response to a step input? Explain your reasoning the possible values the poles can have. B) Now assume the system is not unity feedback. Consider a 1st order sensor transfer function at least two times faster than the original system. If this system is P-controlled, can it exhibit oscillatory response to a step input? Explain your reasoning Solve urgent
A linear time invariant system has an impulse response given by ℎ[?] = 2(−0.5) ? ?[?]...
A linear time invariant system has an impulse response given by ℎ[?] = 2(−0.5) ? ?[?] − 3(0.5) 2? ?[?] where u[n] is the unit step function. a) Find the z-domain transfer function ?(?). b) Draw pole-zero plot of the system and indicate the region of convergence. c) Is the system stable? Explain. d) Is the system causal? Explain. e) Find the unit step response ?[?] of the system, that is, the response to the unit step input. f) Provide...
For the LTI system described by the following system functions, determine (i) the impulse response (ii)...
For the LTI system described by the following system functions, determine (i) the impulse response (ii) the difference equation representation (iii) the pole-zero plot, and (iv) the steady state output y(n) if the input is x[n] = 3cos(πn/3)u[n]. a. H(z) = (z+1)/(z-0.5), causal system (Hint: you need to express H(z) in z-1 to find the difference equation ) b. H(z) = (1 + z-1+ z-2)/(1-1.7z-1+0.6z-2), stable system c. Is the system given in (a) stable? Is the system given in...
A system is characterized by a transfer function given by: H(s)=(9s+5)/(s^2+6s+5) what is the output response...
A system is characterized by a transfer function given by: H(s)=(9s+5)/(s^2+6s+5) what is the output response y(t), if the excitation is given by x(t)=u(t) pick from below: a- y(t)=[1+e^-t-2e^-5t]u(t) b- y(t)=[-2/3e^-t + 62/3e^-4t-20e^-5t]u(t) c- y(t)=[6/5+2t-2e^-t+4/5e^-5t]u(t) d- y(t)=[8/34e^-t-400/82e^-5t+5.51cos(4t-32.5)]u(t) e- y(t)=[2+2e^-t-4^e-5t]u(t)
Using the following code: % Ex 6.4 First-order step and impulse response for two time constants...
Using the following code: % Ex 6.4 First-order step and impulse response for two time constants % clear all; close all; t = 0:.1:100; % Time vector subplot(1,2,1); x = 250*exp(-0.05*t); plot(t,x,'k'); xlabel('Time (hrs)','FontSize',14); ylabel('P_A (mmHg)','FontSize',14); title('Impulse Response','FontSize',14); subplot(1,2,2); x = 20*(1-exp(-0.05*t)); plot(t,x,'k'); xlabel('Time (hrs)','FontSize',14); ylabel('P_A (mmHg)','FontSize',14); title('Step Response','FontSize',14);    ANSWER: The response of a 1st order linear body fluid balance system to step function (L m (t) = 1/s, Eqn. 6.9/p226) and impulse function (L d (t) = 1,...
Find the pole and zero values for the system whose input-output relation is given below and...
Find the pole and zero values for the system whose input-output relation is given below and show them in the z plane. Also calculate the impulse response of this system. y[n-1] - (10/3)y[n] + y[n+1] = x[n]
Suppose there is a market with a big firm and many small price-taking firms (DFCF). Given...
Suppose there is a market with a big firm and many small price-taking firms (DFCF). Given that the inverse market demand function is ?=100−??p=100−Qd, the inverse supply function for small firms is ?=70+???p=70+Qcf and the marginal cost function of the dominant firm is ??=10+1/4⋅???MC=10+1/4⋅qdf. Calculate the equilibrium output of the dominant firm. Round your answer to the first decimal place.
Decide whether each of these statements is True (T) or False (F). Negative feedback with a...
Decide whether each of these statements is True (T) or False (F). Negative feedback with a control system is when: (i) The fed back signal is added to the input signal. (ii) The fed back signal is a measure of the output value of the control system. 1. (i) T (ii) T 2. (i) T (ii) F 3. (i) F (ii) T 4. (i) F (ii) F