Question

A force of 64 pounds stretches a spring 4 feet. A mass of 4 slugs is...

A force of 64 pounds stretches a spring 4 feet. A mass of 4 slugs is attached to the spring and is initially released from rest 2 feet below the equilibrium position. (a) Suppose the spring has a damping force equal to 16 times the instantaneous velocity and is being driven by an external force, ?(?) = 4 cos(5?) . Write the IVP that this problem describes. (3 pts) (b) Solve the equation in part (a) to obtain the equation of motion of the mass. Use exact fractions to report. Do not use decimals

Homework Answers

Answer #1

If you have any questions please let me know

Please give me thumb up..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from...
A mass weighing 16 pounds stretches a spring 8/3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1/2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s^2 for the acceleration due to...
A mass weighing 16 pounds is attached to a spring and stretches it 4 feet. You...
A mass weighing 16 pounds is attached to a spring and stretches it 4 feet. You release the mass from rest one foot below equilibrium. (a) What is the initial value problem that models this scenario? (b) What is the equation of motion? (c) What is the period of motion? (d) Assume now that there is a damping force equivalent to 6 times the velocity. Repeat parts (a) and (b). (e) Now assume there is still the damping force, but...
DIFFERENTIAL EQUATIONS 1. A force of 400 newtons stretches a spring 2 meters. A mass of...
DIFFERENTIAL EQUATIONS 1. A force of 400 newtons stretches a spring 2 meters. A mass of 50 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m/s. Find the equation of motion. 2. A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to times the...
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then...
A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. Starting at t = 0, an external force equal to f(t) = 4 sin(4t) is applied to the system. Find the equation of motion if the surrounding medium offers a damping force that is numerically equal to 8 times the instantaneous velocity. (Use g = 32 ft/s2 for the acceleration due to gravity.) What is x(t) ?...
A force of 400N stretches a string 2 meters. A mass of 50kg is attached to...
A force of 400N stretches a string 2 meters. A mass of 50kg is attached to the end of the spring and stretches the spring to a length of 4 meters. The medium the spring passes through creates a damping force numerically equal to half the instantaneous velocity. If the spring is initially released from equilibrium with upward velocity of 10 m/s. a) Find the equation of motion. b) Find the time at which the mass attains its extreme displacement...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to 2 times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 9 ft/s. (Use g = 32 ft/s2 for the acceleration due to gravity.) x(t) = Find the time at which the mass attains its...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to sqrt(2) times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 9 ft/s. (Use g = 32 ft/s2 for the acceleration due to gravity.) x(t) = Find the time at which the mass attains its...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, the system is immersed in a liquid that offers a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?) at all...