Question

if f: D - R be continuous, and D is close, then F(D) is closed. prove...

if f: D - R be continuous, and D is close, then F(D) is closed. prove or give counterexample

Homework Answers

Answer #1

the statement is false

so for counter example take a sequence in f(D) and start the proof

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with limx→0 f′(x) = L, then f is differentiable on R.
Prove or provide a counterexample Let f:R→R be a function. If f is T_U−T_C continuous, then...
Prove or provide a counterexample Let f:R→R be a function. If f is T_U−T_C continuous, then f is T_C−T_U continuous. T_U is the usual topology and T_C is the open half-line topology
Prove or give a counter example: If f is continuous on R and differentiable on R...
Prove or give a counter example: If f is continuous on R and differentiable on R ∖ { 0 } with lim x → 0 f ′ ( x ) = L , then f is differentiable on R .
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function...
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function g:R→R such that C=g-1(0).
We know that any continuous function f : [a, b] → R is uniformly continuous on...
We know that any continuous function f : [a, b] → R is uniformly continuous on the finite closed interval [a, b]. (i) What is the definition of f being uniformly continuous on its domain? (This definition is meaningful for functions f : J → R defined on any interval J ⊂ R.) (ii) Given a differentiable function f : R → R, prove that if the derivative f ′ is a bounded function on R, then f is uniformly...
2. Suppose [a, b] is a closed bounded interval. If f : [a, b] → R...
2. Suppose [a, b] is a closed bounded interval. If f : [a, b] → R is a continuous function, then prove f has an absolute minimum on [a, b].
Part I) Prove that if f and g are continuous at a, then f+g is continuous...
Part I) Prove that if f and g are continuous at a, then f+g is continuous at a using the epsilon-δ definition. Part II) Let a, L ∈ R. Prove that if a ≥ L− ε for all positive, then a ≥ L.
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous...
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous functions. If limx→a f(x) = f(a) and limx→a g(x) = g(a) with f(a) < g(a), then there exists δ > 0 such that x ∈ D, 0 < |x − a| < δ =⇒ f(x) < g(x).
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs...
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs then there is an r ∈ (a,b) such that f(r) = 0. Using the claims: f is continuous on [a,b] there exists a left sequence (a_n) that is increasing and bounded and converges to r, and left decreasing sequence and bounded (b_n)=r. limf(a_n)= r= limf(b_n), and f(r)=0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT