Question

From an urn containing 9 red balls and 6 green balls, 4 balls are taken without...

From an urn containing 9 red balls and 6 green balls, 4 balls are taken without replacement. Determine the probability that all 4 ball are green

Give the probability if the same experiment is preformed with replacement and the same outcome is obtained

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An urn contains 4 red balls and 6 green balls. Three balls are chosen randomly from...
An urn contains 4 red balls and 6 green balls. Three balls are chosen randomly from the urn, without replacement. (a) What is the probability that all three balls are red? (Round your answer to four decimal places.) (b) Suppose that you win $50 for each red ball drawn and you lose $25 for each green ball drawn. Compute the expected value of your winnings.
Two balls are chosen randomly from an urn containing 6 red and 4 black balls, without...
Two balls are chosen randomly from an urn containing 6 red and 4 black balls, without replacement. Suppose that we win $2 for each black ball selected and we lose $1 for each red ball selected. Let X denote the amount on money we won or lost. (a) Find the probability mass function of X, i.e., find P(X = k) for all possible values of k. (b) Compute E[X]. (c) Compute Var(X)
Urn A contains 6 green and 4 red balls, and Urn B contains 3 green and...
Urn A contains 6 green and 4 red balls, and Urn B contains 3 green and 7 red balls. One ball is drawn from Urn A and transferred to Urn B. Then one ball is drawn from Urn B and transferred to Urn A. Let X = the number of green balls in Urn A after this process. List the possible values for X and then find the entire probability distribution for X.
2. Urn A contains 6 green and 4 red balls, and Urn B contains 3 green...
2. Urn A contains 6 green and 4 red balls, and Urn B contains 3 green and 7 red balls. One ball is drawn from Urn A and transferred to Urn B. Then one ball is drawn from Urn B and transferred to Urn A. Let X = the number of green balls in Urn A after this process. List the possible values for X and then find the entire probability distribution for X.
Urn A has 8 Red balls and 5 Green balls while Urn B has 1 Red...
Urn A has 8 Red balls and 5 Green balls while Urn B has 1 Red ball and 3 Green balls. A fair die is tossed. If a “5” or a “6” are rolled, a ball is drawn from Urn A. Otherwise, a ball is drawn from Urn B. (a) Determine the conditional probability that the chosen ball is Red given that Urn A is selected? (b) Determine the conditional probability that the chosen ball is Red and Urn B...
Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls...
Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls for a total of 13 balls. If 5 balls are randomly selected without replacement, what is the probability of selecting at least two red balls given that at least one yellow ball is selected? Please show all steps.
We have three urns: the first urn has 6 red balls and 4 green balls; the...
We have three urns: the first urn has 6 red balls and 4 green balls; the second urn has 15 red balls and 5 green balls and the third urn has 20 red balls and 10 green balls. We pick 4 balls from the first urn (sampling with replacement); we select 5 balls from the second urn (sampling with replacement) and we select 10 balls from the third urn (sampling with replacement). Let X1 denote the number of red balls...
For an urn containing 4 red balls and 6 green balls, let the number of balls...
For an urn containing 4 red balls and 6 green balls, let the number of balls randomly drawn be the number of heads turning up when 5 fair coins have been previously flipped. What is the probability of drawing 3 green balls? why do we need binomial theorem for this
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and...
Urn A contains 5 green and 4 red balls, and Urn B contains 3 green and 6 red balls. One ball is drawn from Urn A and transferred to Urn B. Then one ball is drawn from Urn B and transferred to Urn A. Let X = the number of green balls in Urn A after this process. List the possible values for X and then find the entire probability distribution for X.
An urn contains 9 red balls, 7 blue balls and 6 green balls. A ball is...
An urn contains 9 red balls, 7 blue balls and 6 green balls. A ball is selected and its color is noted then it is placed back to the urn. A second ball is selected and its color is noted. Find the probability that the color of one of the balls is red and the color of the other ball is blue. A. 0.2603 B. 0.2727 C. 0.4091 D. 0.3430