Question

Let f: [0, 1] --> R be defined by f(x) := x. Show that f is in Riemann integration interval [0, 1] and compute the integral from 0 to 1 of the function f using both the definition of the integral and Riemann (Darboux) sums.

Answer #1

Let R = R[x], f ∈ R \ {0}, and I = (f). Show that R/I is an
integral domain if and only if f is an irreducible polynomial.

Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i)
Prove that if y > 0, then there is a solution x to the equation
f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove
that the function f : R → R is strictly monotone. (iii) By
(i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why
the derivative of the inverse function,...

For the given function f(x) = c show that it is
Riemann integrable on the interval [0, 1] and find the
Riemann integral

Consider the function f : R → R defined by f(x) = ( 5 + sin x if
x < 0, x + cos x + 4 if x ≥ 0. Show that the function f is
differentiable for all x ∈ R. Compute the derivative f' . Show that
f ' is continuous at x = 0. Show that f ' is not differentiable at
x = 0. (In this question you may assume that all polynomial and
trigonometric...

Let f : R − {−1} →R be defined by f(x)=2x/(x+1).
(a)Prove that f is injective.
(b)Show that f is not surjective.

Let f : [0,∞) → [0,∞) be defined by, f(x) := √ x for all x ∈
[0,∞), g : [0,∞) → R be defined by, g(x) := √ x for all x ∈ [0,∞)
and h : [0,∞) → [0,∞) be defined by h(x) := x 2 for each x ∈ [0,∞).
For each of the following (i) state whether the function is defined
- if it is then; (ii) state its domain; (iii) state its codomain;
(iv) state...

If f is a continuous, positive function defined on the interval
(0, 1] such that limx→0+ = ∞ we have seen how to make sense of the
area of the infinite region bounded by the graph of f, the x-axis
and the vertical lines x = 0 and x = 1 with the definition of the
improper integral.
Consider the function f(x) = x sin(1/x) defined on (0, 1] and
note that f is not defined at 0.
• Would...

Let f : R → R be a function satisfying |f(x) − f(y)| ≤ 3|x −
y|^{1/2} for all x, y ∈ R. Apply E − δ definition to show that f is
uniformly continuous in R.

Let f : R → R + be defined by the formula f(x) = 10^2−x . Show
that f is injective and surjective, and find the formula for f −1
(x).
Suppose f : A → B and g : B → A. Prove that if f is injective
and f ◦ g = iB, then g = f −1 .

Prove the following theorem:
Theorem. Let a ∈ R
and let f be a function defined on an
interval centred at a.
IF f is continuous at a
and f(a) > 0 THEN
f is strictly positive on some interval
centred at a.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 17 minutes ago

asked 36 minutes ago

asked 46 minutes ago

asked 57 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago