Question

Determine whether the relation R on N is reflexive, symmetric, and/or transitive. Prove your answer. a)R...

Determine whether the relation R on N is reflexive, symmetric, and/or transitive. Prove your answer.

a)R = {(x,y) : x,y ∈N,2|x,2|y}.

b)R = {(x,y) : x,y ∈ A}. A = {1,2,3,4}

c)R = {(x,y) : x,y ∈N,x is even ,y is odd }.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if the relation R is symmetric, then its transitive closure, t(R)=R*, is also symmetric....
Prove that if the relation R is symmetric, then its transitive closure, t(R)=R*, is also symmetric. Please provide step by step solutions
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t...
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t and z be elements of Q. then t R z if and only if t = (z+1) * n for some integer n.
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
prove right or wrong “if r and s are transitive, then r n s is transitive”
prove right or wrong “if r and s are transitive, then r n s is transitive”
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove R∪(S∩T) = (R∪S)∩(R∪T). 4.Consider the relation R={(x,y)∈R×R||x−y|≤1} on Z. Show that this relation is reflexive and symmetric but not transitive.
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your...
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your solution. (a) R is an equivalence relation. (b) R is transitive, but not symmetric. (c) R is neither symmetric nor reflexive nor transitive. (d) (5 points) R is antisymmetric and symmetric.
Consider the following relation on the set Z: xRy ? x2 + y is even. For...
Consider the following relation on the set Z: xRy ? x2 + y is even. For each question below, if your answer is "yes", then prove it, if your answer is "no", then show a counterexample. (i) Is R reflexive? (ii) Is R symmetric? (iii) Is R antisymmetric? (iv) Is R transitive? (v) Is R an equivalence relation? If it is, then describe the equivalence classes of R. How many equivalence classes are there?
Consider the relation R defined on the real line R, and defined as follows: x ∼...
Consider the relation R defined on the real line R, and defined as follows: x ∼ y if and only if the distance from the point x to the point y is less than 3. Study if this relation is reflexive, symmetric, and transitive. Which points are related to 2?