Question

Verify that the functions y1 = cos x − cos 2x and y2 = sin x...

Verify that the functions y1 = cos x − cos 2x and y2 = sin x − cos 2x both satisfy the differential equation y′′ + y = 3 cos 2x.

Homework Answers

Answer #1

Please feel free to ask any doubts regarding the solution and please rate positively.

Kind regards.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation....
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation. Then find a particular solution of the nonhomogeneous equation. x^2y′′−3xy′+4y=31x^2lnx, x>0, y1(x)=x^2, y2(x)=x^2lnx. Enter an exact answer.
y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6...
y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6 cos(x) − 4. y2 = sin(x) is a particular solution for y''+4y = 3 sin(x). Using the two particular solutions, find a particular solution for y''+4y = 2 cos(x)+sin(x)− 4/3 . Verify if the particular solution satisfies the given DE. [Hint: Rewrite the right hand of this equation in terms of the given particular solutions to get the particular solution] Verify if the particular...
Show that the given functions y1 and y2 are solutions to the DE. Then show that...
Show that the given functions y1 and y2 are solutions to the DE. Then show that y1 and y2 are linearly independent. write the general solution. Impose the given ICs to find the particular solution to the IVP. y'' + 25y = 0; y1 = cos 5x; y2 = sin 5x; y(0) = -2; y'(0) = 3.
Verify that the given functions form a fundamental set of solutions of the differential equation on...
Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Form the general solution. 1.) y'' − 4y = 0; cosh 2x, sinh 2x, (−∞,∞) 2.) y^(4) + y'' = 0; 1, x, cos x, sin x (−∞,∞)
Consider the equation y'' + 4y = 0. a) Justify why the functions y1 = cos(4t)...
Consider the equation y'' + 4y = 0. a) Justify why the functions y1 = cos(4t) and y2 = sin(4t) do not constitute a fundamental set of solutions of the above equation. b) Find y1, y2 that constitute a fundamental set of solutions, justifying your answer.
The wave functions y1(x, t) = (0.150 m)sin(3.00x − 1.50t) and y2(x, t) = (0.250 m)cos(6.00x...
The wave functions y1(x, t) = (0.150 m)sin(3.00x − 1.50t) and y2(x, t) = (0.250 m)cos(6.00x − 3.00t) describe two waves superimposed on a string, with x and y in meters and t in seconds. What is the displacement y of the resultant wave at the following. (Include the sign of the value in your answers.) (a)     x = 0.700 m and t = 0 m (b)     x = 1.15 m and t = 1.15 s m (c)     x =...
Solve the Initial Value Problem (y2 cos(x) − 3x2y − 2x) dx + (2y sin(x) −...
Solve the Initial Value Problem (y2 cos(x) − 3x2y − 2x) dx + (2y sin(x) − x3 + ln(y)) dy = 0,    y(0) = e
Two waves on one string are described by the wave functions y1 = 2.5 cos(3.5x −...
Two waves on one string are described by the wave functions y1 = 2.5 cos(3.5x − 1.3t) y2 = 3.5 sin(4.5x − 2.5t), where x and y are in centimeters and t is in seconds. Find the values of the waves y1 + y2 at the following points. (Remember that the arguments of the trigonometric functions are in radians.) (a)x = 1.00, t = 1.00 (b) x = 1.00, t = 0.500 (c) x = 0.500, t = 0
Consider the differential equation: 66t^2y''+12t(t-11)y'-12(t-11)y=5t^3, . You can verify that y1 = 5t and y2 =...
Consider the differential equation: 66t^2y''+12t(t-11)y'-12(t-11)y=5t^3, . You can verify that y1 = 5t and y2 = 4te^(-2t/11)satisfy the corresponding homogeneous equation. The Wronskian W between y1 and y2 is W(t) = (-40/11)t^2e^((-2t)/11) Apply variation of parameters to find a particular solution. yp = ?????
Two waves on one string are described by the wave functions y1 = 2.5 cos(4.5x −...
Two waves on one string are described by the wave functions y1 = 2.5 cos(4.5x − 1.3t) y2 = 4.5 sin(5.5x − 1.5t) where x and y are in centimeters and t is in seconds. Find the superposition of the waves y1 + y2 at the following points. (Remember that the arguments of the trigonometric functions are in radians.) (a) x = 1.00, t = 1.00 cm (b) x = 1.00, t = 0.500 cm (c) x = 0.500, t...