consider the basis S={v1,v2} for R^2,where v1=(-2,1) and
v2=(1,3),and let T:R^2-R^3 be linear transformation such that...
consider the basis S={v1,v2} for R^2,where v1=(-2,1) and
v2=(1,3),and let T:R^2-R^3 be linear transformation such that
T(v1)=(-1,2,0) And T(v2)=(0,-3,5), find T(2,-3)
1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form
lambda?I.
[[4.5,0][0,4.5]] [[5.5,0][0,5.5]] [[4,0][0,4]] [[3.5,0][0,3.5]] [[5,0][0,5]] [[1.5,0][0,1.5]]
2. Find the orthogonal projection of the matrix
[[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace
0.
[[-1,3][3,1]] [[1.5,1][1,-1.5]] [[0,4][4,0]] [[3,3.5][3.5,-3]] [[0,1.5][1.5,0]] [[-2,1.5][1.5,2]] [[0.5,4.5][4.5,-0.5]] [[-1,6][6,1]] [[0,3.5][3.5,0]] [[-1.5,3.5][3.5,1.5]]
3. Find the orthogonal projection of the matrix
[[1,5][1,2]] onto the space of anti-symmetric 2x2
matrices.
[[0,-1] [1,0]] [[0,2] [-2,0]] [[0,-1.5]
[1.5,0]] [[0,2.5] [-2.5,0]] [[0,0]
[0,0]] [[0,-0.5] [0.5,0]] [[0,1] [-1,0]]
[[0,1.5] [-1.5,0]] [[0,-2.5]
[2.5,0]] [[0,0.5] [-0.5,0]]
4. Let p be the orthogonal projection of
u=[40,-9,91]T onto the...
Suppose R: |R^2 -> |R^2 is the linear transformation:
R( x1 , x2) = (x2 ,...
Suppose R: |R^2 -> |R^2 is the linear transformation:
R( x1 , x2) = (x2 , x1)
a) Give a geometric description of R.
b) Compute the matrix of R relative to te standard basis of
|R^2
c) Let v1 = (1, 1) and v2 = (1, -1)
Verify that B = (v1, v2) is a basis for |R^2, and compute the
matrix of R relative to the basis B, i.e [R]B
Find the standard matrix for the following transformation T : R
4 → R 3 :...
Find the standard matrix for the following transformation T : R
4 → R 3 : T(x1, x2, x3, x4) = (x1 − x2 + x3 − 3x4, x1 − x2 + 2x3 +
4x4, 2x1 − 2x2 + x3 + 5x4) (a) Compute T(~e1), T(~e2), T(~e3), and
T(~e4). (b) Find an equation in vector form for the set of vectors
~x ∈ R 4 such that T(~x) = (−1, −4, 1). (c) What is the range of
T?
Problem 2. (20 pts.) show that T is a linear transformation by
finding a matrix that...
Problem 2. (20 pts.) show that T is a linear transformation by
finding a matrix that implements the mapping. Note that x1, x2, ...
are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) =
(0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 −
4x4 (T : R 4 → R)
Problem 3. (20 pts.) Which of the following statements are true
about the transformation matrix...
Problem 2. Show that T is a linear transformation by finding a
matrix that implements the...
Problem 2. Show that T is a linear transformation by finding a
matrix that implements the mapping. Note that x1,
x2, ... are not vectors but are entries in vectors.
(a) T(x1, x2, x3,
x4) = (0, x1 + x2, x2 +
x3, x3 + x4)
(b) T(x1, x2, x3,
x4) = 2x1 + 3x3 − 4x4
(T : R4 → R)
Please show T is a linear transformation for part (a) and
(b).