Question

show that the relation "≈" is reflexive, symmetric, and transitive on the class of all sets.

  1. show that the relation "≈" is reflexive, symmetric, and transitive on the class of all sets.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The subgroup relation ≤ on the set of subgroups G is reflexive, transitive, and anti-symmetric.
The subgroup relation ≤ on the set of subgroups G is reflexive, transitive, and anti-symmetric.
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation R on Z where (?, ?) ∈ ? if ? = ? . The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S C T.
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Show that reflexive sentences are independent from symmetric, and transitive sentences by constructing a structure that...
Show that reflexive sentences are independent from symmetric, and transitive sentences by constructing a structure that satisfy symmetric and transitive quality but not reflexive. Reflexive :∀xE(x, x) symmetric :∀xy(E(x, y) → E(y, x)) transitive: ∀xyz(E(x, y) ∧ E(y, z) → E(x, z))
Show that symmetric sentences are independent from reflexive, and transitive sentences by constructing a structure that...
Show that symmetric sentences are independent from reflexive, and transitive sentences by constructing a structure that satisfy transitive and reflexive quality but not symmetric. Reflexive :∀xE(x, x) symmetric :∀xy(E(x, y) → E(y, x)) transitive: ∀xyz(E(x, y) ∧ E(y, z) → E(x, z))
Give an example of a relation on the reals that is reflexive and symmetric, but not...
Give an example of a relation on the reals that is reflexive and symmetric, but not transitive
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t...
Disprove: The following relation R on set Q is either reflexive, symmetric, or transitive. Let t and z be elements of Q. then t R z if and only if t = (z+1) * n for some integer n.
Prove that strong connectivity is reflexive, transitive and symmetric.
Prove that strong connectivity is reflexive, transitive and symmetric.
Determine whether the following is reflexive, symmetric, antisymmetric, transitive, and/or a partial order: (x, y) ∈...
Determine whether the following is reflexive, symmetric, antisymmetric, transitive, and/or a partial order: (x, y) ∈ R if 3 divides x – y
Give examples of the following relationships: a) A transitive and symmetrical relationship, but not reflexive. b)...
Give examples of the following relationships: a) A transitive and symmetrical relationship, but not reflexive. b) A symmetric and reflexive relationship, but not transitive. c) An antisymmetric and thoughtless relationship.