Question

A steel ball weighing 128 lb is suspended from a spring, whereupon the spring is stretched...

A steel ball weighing 128 lb is suspended from a spring, whereupon the spring is stretched 2 ft from its natural length. The ball is started in motion with no initial velocity by displacing it 6 in above the equilibrium position. Assuming no air resistance, find (a) an expression for the position of the ball at any time t, and (b) the position of the ball at t = π 12 sec.

Please show all the work on paper and take pictures plz! Thank you

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 128 lb weight is attached to a spring whereupon the spring is stretched 2 ft...
A 128 lb weight is attached to a spring whereupon the spring is stretched 2 ft and allowed to come to rest. The weight is set into motion from rest by displacing the spring 6 in above its equilibrium position and also by applying an external force F(t) = 8 sin 4t. Find the subsequent motion of the weight if the surrounding medium offers a negligible resistance.
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring...
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring 12 feet. The ball is started in motion from the equilibrium position with a downward velocity of 8 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second) . Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. (Note that the...
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring...
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring 13 1 3 feet. The ball is started in motion from the equilibrium position with a downward velocity of 7 7 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second) . Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t....
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring...
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring 1/2 feet. The ball is started in motion from the equilibrium position with a downward velocity of 6 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second) . Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. (Note that the...
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring...
A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring \frac{1}{6} feet. The ball is started in motion from the equilibrium position with a downward velocity of 3 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second) . *Suppose that after t seconds the ball is y feet below its rest position. Find y in terms of t. (Note that the...
This problem is an example of critically damped harmonic motion. A hollow steel ball weighing 4...
This problem is an example of critically damped harmonic motion. A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring 1818 feet. The ball is started in motion from the equilibrium position with a downward velocity of 55 feet per second. The air resistance (in pounds) of the moving ball numerically equals 4 times its velocity (in feet per second) . Suppose that after t seconds the ball is y feet below its rest...
A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes...
A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time t=​0, an external force of F(t) = 3cos(4t) lb is applied to the system. If the spring constant is 10 lb/ft and the damping constant is 3 lb-sec/ft, find the​ steady-state solution for the system. Use g=32 ft/sec^2
A mass weighing 32 lb is attached to a spring hanging from the ceiling and comes...
A mass weighing 32 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time t=0, an external force of F(t) = 3cos(2t) lb is applied to the system. If the spring constant is 10lb/ft and the damping constant is 4 lb-sec/ft, find the steady state solution for the system. Use g = 32 ft / sec^2
A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes...
A mass weighing 8 lb is attached to a spring hanging from the ceiling, and comes to rest at its equilibrium position. The spring constant is 9 lb/ft and there is no damping. A. How far (in feet) does the mass stretch the spring from its natural length? L=________ (do not include units). B. What is the resonance frequency for the system? ?0= _________(do not include units). C. At time t=0 seconds, an external force F(t)=2cos(?0t) is applied to the...
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward,...
A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in, and then set in motion with a downward velocity of 2 ft/s, and if there is no damping, find the position u of the mass at any time t. Determine the frequency, period, amplitude, and phase of the motion