Question

let Xn be a sequence in a metric space X . If Xn -> x in...

let Xn be a sequence in a metric space X . If Xn -> x in X iff every neighbourhood of x contains all but finitely many points of the terms of {Xn}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
is about metric spaces: Let X be a metric discret space show that a sequence x_n...
is about metric spaces: Let X be a metric discret space show that a sequence x_n in X converge to l in X iff x_n is constant exept for a finite number of points.
Let (X,d) be a complete metric space, and T a d-contraction on X, i.e., T: X...
Let (X,d) be a complete metric space, and T a d-contraction on X, i.e., T: X → X and there exists a q∈ (0,1) such that for all x,y ∈ X, we have d(T(x),T(y)) ≤ q∙d(x,y). Let a ∈ X, and define a sequence (xn)n∈Nin X by x1 := a     and     ∀n ∈ N:     xn+1 := T(xn). Prove, for all n ∈ N, that d(xn,xn+1) ≤ qn-1∙d(x1,x2). (Use the Principle of Mathematical Induction.) Prove that (xn)n∈N is a d-Cauchy sequence in...
Let (X,d) be a metric space. Let E ⊆ X. Consider the set L of all...
Let (X,d) be a metric space. Let E ⊆ X. Consider the set L of all points in X which are limits of sequences contained in E. Prove or disprove the following: (a) L⊆E. (b) L⊆Ē. (c) L̄ ⊆ Ē.
Let {xn} be a non-decreasing sequence and assume that xn goes to x as n goes...
Let {xn} be a non-decreasing sequence and assume that xn goes to x as n goes to infinity. Show that for all, n in N (naturals), xn < x. Formulate and prove an analogous result for a non-increasing sequences.
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if...
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if σ : N → N is one-one, then the sequence (bn = aσ(n))n also converges to L.
Let ( xn) and (yn) be sequence with xn converge to x and yn converge to...
Let ( xn) and (yn) be sequence with xn converge to x and yn converge to y. prove that for dn=((xn-x)^2+(yn-y)^2)^(1/2), dn converge to 0.
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there...
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there is a nearest point p∈K to x; that is, there is a point p∈K such that, for all other q∈K, d(p,x)≤d(q,x). [Suggestion: As a start, let S={d(x,y):y∈K} and show there is a sequence (qn) from K such that the numerical sequence (d(x,qn)) converges to inf(S).] Let X=R^2 and T={(x,y):x^2+y^2=1}. Show, there is a point z∈X and distinct points a,b∈T that are nearest points to...
Let X = (xn) be a sequence in R^p which is convergent to x. Show that...
Let X = (xn) be a sequence in R^p which is convergent to x. Show that lim(||xn||) = ||x||. hint: use triange inequality
Let (X, d) be a compact metric space and let A ⊆ X. Suppose that A...
Let (X, d) be a compact metric space and let A ⊆ X. Suppose that A is not compact. Prove that there exists a continuous function f : A → R, from (A, d) to (R, d|·|), which is not uniformly continuous.
Let xn be a sequence such that for every m ∈ N, m ≥ 2 the...
Let xn be a sequence such that for every m ∈ N, m ≥ 2 the sequence limn→∞ xmn = L. Prove or provide a counterexample: limn→∞ xn = L.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT