Question

If we let N stand for the set of all natural numbers, then we write 6N...

If we let N stand for the set of all natural numbers, then we write 6N for the set of natural numbers all multiplied by 6 (so 6N = {6, 12, 18, 24, . . . }). Show that the sets N and 6N have the same cardinality by describing an explicit one-to-one correspondence between the two sets.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.The one-to-one correspondence between the positive rational numbers and the natural numbers implies what conclusion about...
1.The one-to-one correspondence between the positive rational numbers and the natural numbers implies what conclusion about the cardinality of the two sets? 2. Is it possible to form a one-to-one correspondence between the natural numbers and the real numbers? Is either set a proper subset of the other? What is the significance of the answer to these questions?
Let S be the set {(-1)^n +1 - (1/n): all n are natural numbers}. 1. find...
Let S be the set {(-1)^n +1 - (1/n): all n are natural numbers}. 1. find the infimum and the supremum of S, and prove that these are indeed the infimum and supremum. 2. find all the boundary points of the set S. Prove that each of these numbers is a boundary point. 3. Is the set S closed? Compact? give reasons. 4. Complete the sentence: Any nonempty compact set has a....
Using Discrete Math Let ρ be the relation on the set of natural numbers N given...
Using Discrete Math Let ρ be the relation on the set of natural numbers N given by: for all x, y ∈ N, xρy if and only if x + y is even. Show that ρ is an equivalence relation and determine the equivalence classes.
Let N2K be the set of the first 2k natural numbers. Prove that if we choose...
Let N2K be the set of the first 2k natural numbers. Prove that if we choose k + 1 numbers out of these 2k, there is at least one pair of numbers a, b for which a is divisible by b.
Exercise 6.6. Let the inductive set be equal to all natural numbers, N. Prove the following...
Exercise 6.6. Let the inductive set be equal to all natural numbers, N. Prove the following propositions. (a) ∀n, 2n ≥ 1 + n. (b) ∀n, 4n − 1 is divisible by 3. (c) ∀n, 3n ≥ 1 + 2 n. (d) ∀n, 21 + 2 2 + ⋯ + 2 n = 2 n+1 − 2.
Let S be the set of real numbers between 0 and 1, inclusive; i.e. S =...
Let S be the set of real numbers between 0 and 1, inclusive; i.e. S = [0, 1]. Let T be the set of real numbers between 1 and 3 inclusive (i.e. T = [1, 3]). Show that S and T have the same cardinality.
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do not know the value of S(n) for every n ∈ N except when n = 2k for some k ∈ N, in which case S(n) = n log n + 3n − 5. Show that S(n) ∈ Θ(n log n). Hint: (if you use it, you need to prove it): ∀n > 1 ∈ N, ∃k ∈ N, such that 2k-1 ≤ n ≤...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do not know the value of S(n) for every n ∈ N except when n = 2k for some k ∈ N, in which case S(n) = n log n + 3n − 5. Show that S(n) ∈ Θ(n log n). Hint: (if you use it, you need to prove it): ∀n > 1 ∈ N, ∃k ∈ N, such that 2k-1 ≤ n ≤...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do...
Let S(n) be a monotonic non-decreasing positive function defined for all natural numbers n. We do not know the value of S(n) for every n ∈ N except when n = 2k for some k ∈ N, in which case S(n) = n log n + 3n − 5. Show that S(n) ∈ Θ(n log n). Hint: (if you use it, you need to prove it): ∀n > 1 ∈ N, ∃k ∈ N, such that 2k-1 ≤ n ≤...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT