Question

Used induction to proof that 1 + 2 + 3 + ... + 2n = n(2n+1)...

Used induction to proof that 1 + 2 + 3 + ... + 2n = n(2n+1) when n is a positive integer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Used induction to proof that f_1 + f_3 + f_5 + ... + f_(2n-1) = f_(2n)...
Used induction to proof that f_1 + f_3 + f_5 + ... + f_(2n-1) = f_(2n) when n is a positive integer. Notice that f_i represents i-th fibonacci number.
Used induction to proof that (f_1)^2 + (f_2)^2 + (f_3)^2 + ... + (f_n)^2 = (f_n)...
Used induction to proof that (f_1)^2 + (f_2)^2 + (f_3)^2 + ... + (f_n)^2 = (f_n) (f_(n+1)) when n is a positive integer. Notice that f_i represents i-th fibonacci number.
Used induction to proof that 2^n > n^2 if n is an integer greater than 4.
Used induction to proof that 2^n > n^2 if n is an integer greater than 4.
Proof the following theorem using mathematical induction: 2n ≥ 3n, for n ≥ 4
Proof the following theorem using mathematical induction: 2n ≥ 3n, for n ≥ 4
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
proof by induction: show that n(n+1)(n+2) is a multiple of 3
proof by induction: show that n(n+1)(n+2) is a multiple of 3
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of...
Use mathematical induction to prove that 12+22+32+42+52+...+(n-1)2+n2= n(n+1)(2n+1)/6. (First state which of the 3 versions of induction: WOP, Ordinary or Strong, you plan to use.) proof: Answer goes here.
Prove by induction that 1*1! + 2*2! + 3*3! +... + n*n! = (n+1)! - 1...
Prove by induction that 1*1! + 2*2! + 3*3! +... + n*n! = (n+1)! - 1 for positive integer n.
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 2 2n+1...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 2 2n+1 + 100.
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers