Question

Let (V, K) be a vector space and π1, π2 be projections on V . If...

Let (V, K) be a vector space and π1, π2 be projections on V . If π1 and π2 commute, i.e. π1 ◦ π2 = π2 ◦ π1, is it true or false that π = π1 + π2 − π1 ◦ π2 is also a projection?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V be an n-dimensional vector space and W a vector space that is isomorphic to...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" the Definiton of isomorphic:  Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" The Definition of dimenion: the...
Let S be a set in a vector space V and v any vector. Prove that...
Let S be a set in a vector space V and v any vector. Prove that span(S) = span(S ∪ {v}) if and only if v ∈ span(S).
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
(3) Let V be a finite dimensional vector space, and let T: V® V be a...
(3) Let V be a finite dimensional vector space, and let T: V® V be a linear transformation such that rk(T) = rk(T2). a) Show that ker(T) = ker(T2). b) Show that 0 is the only vector that lies in both the null space of T, and the range space of T
Let U and V be subspaces of the vector space W . Recall that U ∩...
Let U and V be subspaces of the vector space W . Recall that U ∩ V is the set of all vectors ⃗v in W that are in both of U or V , and that U ∪ V is the set of all vectors ⃗v in W that are in at least one of U or V i: Prove: U ∩V is a subspace of W. ii: Consider the statement: “U ∪ V is a subspace of W...
Let T be a 1-1 linear transformation from a vector space V to a vector space...
Let T be a 1-1 linear transformation from a vector space V to a vector space W. If the vectors u, v and w are linearly independent in V, prove that T(u), T(v), T(w) are linearly independent in W
Let V be a finite-dimensional vector space and let T be a linear map in L(V,...
Let V be a finite-dimensional vector space and let T be a linear map in L(V, V ). Suppose that dim(range(T 2 )) = dim(range(T)). Prove that the range and null space of T have only the zero vector in common
Let V be a vector space and let U1, U2 be two subspaces of V ....
Let V be a vector space and let U1, U2 be two subspaces of V . Show that U1 ∩ U2 is a subspace of V . By giving an example, show that U1 ∪ U2 is in general not a subspace of V .
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be...
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be a set of inner products on V that is (when viewed as a subset of B(V)) linearly independent. Prove that S must be finite e) Exhibit an infinite linearly independent set of inner products on R(x), the vector space of all polynomials with real coefficients.
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any...
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any non-zero λ1,…,λn∈R, λ1v1,…,λnvn is also a basis of V. (b) Let ui=v1+⋯+vi, 1≤i≤n. Show that u1,…,un is a basis of V.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT