Question

Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where...

Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where S is a periodic function defined by S(t)={1,0≤t<1 0, 1≤t<2, and S(t+2)=S(t) for all t≥0. Hint: : Use the formula for the Laplace transform of a periodic function.

Y(s)=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Laplace transform to solve the following initial value problem: y '' − 2y '+ 2y...
Use Laplace transform to solve the following initial value problem: y '' − 2y '+ 2y = e −t , y(0) = 0 and y ' (0) = 1 differential eq
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is...
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is the Dirac delta function.
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y...
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y = 0 y(0) = −3 , y′(0) = −3 First, using Y for the Laplace transform of y(t)y, i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation __________________________ = 0 Now solve for Y(s) = ______________________________ and write the above answer in its partial fraction decomposition, Y(s) = A / (s+a) + B / ((s+a)^2) Y(s) =...
Differential Equations: Use the Laplace transform to solve the given initial value problem: y′′ −2y′ +2y=cost;...
Differential Equations: Use the Laplace transform to solve the given initial value problem: y′′ −2y′ +2y=cost; y(0)=1, y′(0)=0
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now...
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now solve the IVP by using the inverse Laplace Transform y(t)=L^−1{Y(s)} y(t) =
Use the Laplace transform to solve the given initial-value problem. y'' + y = f(t), y(0)...
Use the Laplace transform to solve the given initial-value problem. y'' + y = f(t), y(0) = 0, y'(0) = 1, where f(t) = 0, 0 ≤ t < π 5, π ≤ t < 2π 0, t ≥ 2π
Solve the following initial value problem using Laplace transform y"+2y'+y=4cos(2t) When y(0)=0 y'(0)=2 Thankyou
Solve the following initial value problem using Laplace transform y"+2y'+y=4cos(2t) When y(0)=0 y'(0)=2 Thankyou
Solve the initial value problem using Laplace transform theory.                   y”-2y’+10y=24t,   y(0)=0,   y'(0)= -1
Solve the initial value problem using Laplace transform theory.                   y”-2y’+10y=24t,   y(0)=0,   y'(0)= -1
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below....
Solve for​ Y(s), the Laplace transform of the solution​ y(t) to the initial value problem below. y''-9y'+18y=5te^(3t), y(0)=2, y'(0)=-4
Use the Laplace Transform to solve the following initial value problem: 11. y′′ −y′ −6y={0 for0<t<2;...
Use the Laplace Transform to solve the following initial value problem: 11. y′′ −y′ −6y={0 for0<t<2; e^t for t>2}, y(0)=3, y′(0)=4