Question

There are 3 problems in the first part of this homework assignment. Consider the following second...

There are 3 problems in the first part of this homework assignment. Consider the following second order nonhomogeneous linear differential equations

(1) y ′′ + 100y = 36 cos(8x) + 72 sin(8x)

(2) y ′′ − 4y ′ + 3y = (2 − 12x)e x + (60 + 40x)e 3x

(3) y ′′ − 2αy ′ + α 2 y = 60xeαx + 60x 2 e αx ,

where α 6= 0 is a real nonozero constant. Use the method of undetermined coefficients to find a particular solution for each equation. Then solve each equation for real general solution.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the following second order differential equations: (a) Find the general solution of y'' − 2y'...
Solve the following second order differential equations: (a) Find the general solution of y'' − 2y' = sin(3x) using the method of undetermined coefficients. (b) Find the general solution of y'' − 2y'− 3y = te^−t using the method of variation of parameters.
Non homogeneous eq w constant; undetermined coefficients Find the general solution: 1) y" + 4y' +...
Non homogeneous eq w constant; undetermined coefficients Find the general solution: 1) y" + 4y' + 4y = xe^−x. 2) y" + 2y' + 5y = e^2x cos x. Determine a suitable form for a particular solution z = z(x) of the given equations 1) y" + 2y' = 2x + x^2e^−3x + sin 2x. 2) y" − 5y' + 6y = 2e^2x cos x − 3xe^3x + 5. 3) y" + 5y' + 6y = 2e^2x cos x −...
1) Consider the following differential equation to be solved by variation of parameters. y'' + y...
1) Consider the following differential equation to be solved by variation of parameters. y'' + y = sec(θ) tan(θ) Find the complementary function of the differential equation. yc(θ) = Find the general solution of the differential equation. y(θ) = 2) Solve the given differential equation by undetermined coefficients. y'' + 5y' + 4y = 8 y(x) =
(1 point) Match the following nonhomogeneous linear equations with the form of the particular solution yp...
(1 point) Match the following nonhomogeneous linear equations with the form of the particular solution yp for the method of undetermined coefficients.   ?    A    B    C    D      1. y′′+y=t(1+sint)   ?    A    B    C    D      2. y′′+4y=t2sin(2t)+(5t−7)cos(2t)   ?    A    B    C    D      3. y′′+2y′+2y=3e−t+2e−tcost+4e−tt2sint   ?    A    B    C    D      4. y′′−4y′+4y=2t2+4te2t+tsin(2t) A. yp=t(A0t2+A1t+A2)sin(2t)+t(B0t2+B1t+B2)cos(2t) B. yp=A0t2+A1t+A2+t2(B0t+B1)e2t+(C0t+C1)sin(2t)+(D0t+D1)cos(2t) C. yp=Ae−t+t(B0t2+B1t+B2)e−tcost+t(C0t2+C1t+C2)e−tsint D. yp=A0t+A1+t(B0t+B1)sint+t(C0t+C1)cost
(* Problem 3 *) (* Consider differential equations of the form a(x) + b(x)dy /dx=0 *)...
(* Problem 3 *) (* Consider differential equations of the form a(x) + b(x)dy /dx=0 *) \ (* Use mathematica to determin if they are in Exact form or not. If they are, use CountourPlot to graph the different solution curves 3.a 3x^2+y + (x+3y^2)dy /dx=0 3.b cos(x) + sin(x) dy /dx=0 3.c y e^xy+ x e^xydy/dx=0
A) In this problem we consider an equation in differential form ???+???=0Mdx+Ndy=0. The equation (5?^4?+4cos(2?)?^−4)??+(5?^5−3?^−4)??=0 in...
A) In this problem we consider an equation in differential form ???+???=0Mdx+Ndy=0. The equation (5?^4?+4cos(2?)?^−4)??+(5?^5−3?^−4)??=0 in differential form ?˜??+?˜??=0 is not exact. Indeed, we have My-Mx= ________ 5x^4-4(4)cos(2x)*y^(-5)-25x^4 (My-Mn)/M=_____ -4/y in function y alone. ?(?)= _____y^4 Multiplying the original equation by the integrating factor we obtain a new equation ???+???=0 where M=____ N=_____ which is exact since My=_____ Nx=______ This problem is exact. Therefore an implicit general solution can be written in the form  ?(?,?)=? where ?(?,?)=_________ Finally find the value...
Question 11: What is the general solution of the following homogeneous second-order differential equation? d^2y/dx^2 +...
Question 11: What is the general solution of the following homogeneous second-order differential equation? d^2y/dx^2 + 10 dy/dx + 25.y =0 (a) y = e 12.5.x (Ax + B) (b) y = e -5.x (Ax + B) (c) y = e -10.x (Ax + B) (d) y = e +5.x (Ax + B) Question 12: What is the general solution of the following homogeneous second-order differential equation? Non-integers are expressed to one decimal place. d^2y/dx^2 − 38.y =0 (a) y...
3. Consider the region R in the first quadrant enclosed by y = x, y =...
3. Consider the region R in the first quadrant enclosed by y = x, y = x/2, and y = 5. (a) Sketch this region, making sure to identify and label all points of intersection. (b) Find the area of R, using the method of your choice. (c) Using the method of your choice, set up an integral for the volume of the solid resulting from rotating R around the y-axis. Do NOT evaluate the integral. (d) Using the method...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT