Question

Suppose convergent series Ak has partial sums: an And a series Bk has partial sums: bn...

Suppose convergent series Ak has partial sums: an
And a series Bk has partial sums: bn
Suppose lim(bn-an) =0, as n to infinity. Whether series Bk is converges or not? Prove.
Suppose lim(Bk-Ak) =0, as k to infinity. Whether series Bk is converges or not? Prove.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use a comparison test to prove the following (here M1 and M2 are constants) if ak...
Use a comparison test to prove the following (here M1 and M2 are constants) if ak > 0 , bk >0 and <>a</>k / bk <= M1 , bk / ak <= M2 for all K then sum of ak and the sum of bk either both converges or both diverge
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn}...
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn} is a sequence of real numbers that converges. Prove that {xn+bn} converges to +infinity.
Which of the following statements is true? a) The geometric series Σ∞n=1 r^n is always convergent....
Which of the following statements is true? a) The geometric series Σ∞n=1 r^n is always convergent. b) for the series Σ∞n=1an, if lim n→∞ an = 1/3, then the series will be convergent. c) If an> bn for all values of n and Σ∞n=1 bn is convergent, then Σ∞ n=1an is also convergent. d) None of the above
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from...
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from n=1 to infinity of (1/n!) b) sigma from n=1 to infinity of (2n)!/(3n) Use the ROOT test to determine whether the series converges or diverges. a) sigma from n=1 to infinity of    (tan-1(n))-n b) sigma from n=1 to infinity of ((-2n)/(n+1))5n For each series, use and state any appropriate tests to decide if it converges or diverges. Be sure to verify all necessary...
Show that the series sum(an) from n=1 to infinity where each an >= 0 converges if...
Show that the series sum(an) from n=1 to infinity where each an >= 0 converges if and only if for every epsilon>0 there is an integer N such that | sum(ak ) from k=N to infinity | < epsilon
1) if a sequence is monotone decreasing and greater than 0 for all values of n...
1) if a sequence is monotone decreasing and greater than 0 for all values of n (n=1 to infinity) then the sequence must converge. True or false? 2) In order for infinite series k=1 to infinity (ak + bk) = series ak + series bk, both series must converge. True or false? 3) Let f(x) be a continuous decreasing function where f(k) = ak. If integral 1 to infinity f(x) = 5, what can we conclude about series ak? -series...
Determine whether the series is convergent or divergent. If it is convergent, find its sum. (a)...
Determine whether the series is convergent or divergent. If it is convergent, find its sum. (a) ∑_(n=1)^∞ (e2/2π)n (b) ∑_(n=1)^∞ 〖[(-0.2)〗n+(0.6)n-1]〗 (c) ∑_(k=0)^∞ (√2)-k
Let Sum from n=1 to infinity (an) be a convergent series with monotonically decreasing positive terms....
Let Sum from n=1 to infinity (an) be a convergent series with monotonically decreasing positive terms. Prove that limn→∞ n(an) = 0.
Determine whether the series Summation from n equals 0 to infinity e Superscript negative 5 n∑n=0∞e^−5n...
Determine whether the series Summation from n equals 0 to infinity e Superscript negative 5 n∑n=0∞e^−5n converges or diverges. If it​ converges, find its sum. Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A.The series converges because ModifyingBelow lim With n right arrow infinitylimn→∞ e Superscript negative 5 ne−5nequals=0. The sum of the series is nothing. ​(Type an exact​ answer.) B.The series diverges because it is a geometric series with StartAbsoluteValue r...
3. Let ∑an be a conditionally convergent series. Prove that there exists a rearrangement ∑a_f(n) diverging...
3. Let ∑an be a conditionally convergent series. Prove that there exists a rearrangement ∑a_f(n) diverging to positive infinity
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT