Question

calculate the range of a 6.3MeV alpha particle in: a) aluminum; b) nickel; and c) platinum

calculate the range of a 6.3MeV alpha particle in: a) aluminum; b) nickel; and c) platinum

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
calculate the range of a 6.3MeV alpha particle in: a) aluminum; b) nickel; and c) platinum
calculate the range of a 6.3MeV alpha particle in: a) aluminum; b) nickel; and c) platinum
Calculate the range of a 6.3 MeV alpha particle in aluminum, nickel and platinum.
Calculate the range of a 6.3 MeV alpha particle in aluminum, nickel and platinum.
Calculate the number of atoms per unit cell in (a) Aluminum (FCC) (b) Alpha-iron (BCC)
Calculate the number of atoms per unit cell in (a) Aluminum (FCC) (b) Alpha-iron (BCC)
what is the stopping power of an alpha particle given 5.3MeV energy and 0.037mm range in...
what is the stopping power of an alpha particle given 5.3MeV energy and 0.037mm range in tissue? What would be the mass stopping power?
a) Consider an alpha-particle of mass mα and kinetic energy 4.7 MeV. Calculate its velocity and...
a) Consider an alpha-particle of mass mα and kinetic energy 4.7 MeV. Calculate its velocity and compare it to the speed of light. [2 marks] b) Calculate the de Broglie wavelength of the alpha-particle in a) and express your result in fm (femtometer).
When an alpha particle collides elastically with a nucleus the nucleus recoils. A 5.00-MeV alpha particle...
When an alpha particle collides elastically with a nucleus the nucleus recoils. A 5.00-MeV alpha particle has a head-on elastic collision with a gold nucleus, initially at rest. (a) What is the distance of closest approach of the alpha particle to the recoiling nucleus? (Hint: At closest approach the alpha particle and the recoiling nucleus are moving with the same velocity in the laboratory reference frame.) (b) How does this compare with the result one gets if, as in Example...
An alpha particle (the nucleus of a helium atom formed by 2 protons and 2 neutrons...
An alpha particle (the nucleus of a helium atom formed by 2 protons and 2 neutrons with charge q = +2(1.6 x 10-19 C ) is moving perpendicular to a magnetic field of 0.730 tesla at a velocity of 4.00E+6 m/s ; calculate the magnitude of the magnetic force exerted on it. Calculate the acceleration of the alpha particle. What will be the radius of curvature of the path followed by the alpha particle in the magnetic field? What would...
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest...
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an electric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of −3.45×10−3 V .The charge and the mass of an alpha particle are qα = 3.20×10−19 C and mα = 6.68×10−27 kg , respectively. Part A Mechanical energy is conserved in the presence...
In the Rutherford scattering experiment, an alpha particle is aimed directly at a gold nucleus. The...
In the Rutherford scattering experiment, an alpha particle is aimed directly at a gold nucleus. The distance of closest approach of the alpha particle to the nucleus occurs when: A) the alpha particle hits the nucleus B) the alpha particle hits the electron cloud C) the kinetic energy of the alpha particle is completely transformed to potential energy due to the nuclear force D) the kinetic energy of the alpha particle is completely transformed to potential energy due to the...
A proton is located at <0, 0, -2.7 × 10−9> m and an alpha particle (consisting...
A proton is located at <0, 0, -2.7 × 10−9> m and an alpha particle (consisting of two protons and two neutrons) is located at <2.3 × 10−9, 0, 2.1 × 10−9>. (Express your answers in vector form.) (a) Calculate the force the proton exerts on the alpha particle. (b) Calculate the force the alpha particle exerts on the proton.