Question

8.4: Let f : X → Y and g : Y→ Z be maps. Prove that...

8.4: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is surjective then g is surjective.

8.5: Let f : X → Y and g : Y→ Z be bijections. Prove that if composition g o f is bijective then f is bijective.

8.6: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is bijective then f is injective and g is surjective.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X, Y and Z be sets. Let f : X → Y and g :...
Let X, Y and Z be sets. Let f : X → Y and g : Y → Z functions. (a) (3 Pts.) Show that if g ◦ f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X → Y and g : Y → Z such that g ◦ f is injective but g is not injective. (c) (3 Pts.) Show that...
Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is...
Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is injective and g is surjective.*You may not use, without proof, the result that if g◦f is surjective then g is surjective, and if g◦f is injective then f is injective. In fact, doing so would result in circular logic.
Let f: Z -> Z be a function given by f(x) = ⌈x/2⌉ + 5. Prove...
Let f: Z -> Z be a function given by f(x) = ⌈x/2⌉ + 5. Prove that f is surjective (onto).
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective....
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective. (b)Show that f is not surjective.
Let f : R → R + be defined by the formula f(x) = 10^2−x ....
Let f : R → R + be defined by the formula f(x) = 10^2−x . Show that f is injective and surjective, and find the formula for f −1 (x). Suppose f : A → B and g : B → A. Prove that if f is injective and f ◦ g = iB, then g = f −1 .
Let f : A → B and g : B → C. For each statement below...
Let f : A → B and g : B → C. For each statement below either prove it or construct f, g, A, B, C which show that the statement is false. (a) If g ◦ f is surjective, then g is surjective. (b) If g ◦ f is surjective, then f is surjective. (c) If g ◦ f is injective, then f and g are injective
let G be a group of order 18. x, y, and z are elements of G....
let G be a group of order 18. x, y, and z are elements of G. if | < x, y >| = 9 and o(z) = order of z = 9, prove that G = < x, y, z >
2. Define a function f : Z → Z × Z by f(x) = (x 2...
2. Define a function f : Z → Z × Z by f(x) = (x 2 , −x). (a) Find f(1), f(−7), and f(0). (b) Is f injective (one-to-one)? If so, prove it; if not, disprove with a counterexample. (c) Is f surjective (onto)? If so, prove it; if not, disprove with a counterexample.
Prove: Let x,y be in R such that x < y. There exists a z in...
Prove: Let x,y be in R such that x < y. There exists a z in R such that x < z < y. Given: Axiom 8.1. For all x,y,z in R: (i) x + y = y + x (ii) (x + y) + z = x + (y + z) (iii) x*(y + z) = x*y + x*z (iv) x*y = y*x (v) (x*y)*z = x*(y*z) Axiom 8.2. There exists a real number 0 such that for all...
Let G be a graph with x, y, z є V(G). Prove that if G contains...
Let G be a graph with x, y, z є V(G). Prove that if G contains an x, y-path and a y, z-path, then it contains an x, z-path.