Question

If n is a natural number, then 1 * 5 + 2 * 6 + 3...

If n is a natural number, then 1 * 5 + 2 * 6 + 3 * 7 + ------ + n(n +4) = n(n+1)(2n+13)/6.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove by mathematical indution: If n is a natural number, then 1/2*3 + 1/3*4 + 1/4*5...
Prove by mathematical indution: If n is a natural number, then 1/2*3 + 1/3*4 + 1/4*5 +....+1/(n +1)(N+2)=n/2n+4
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
Show by induction that 1+3+5+...+(2n-1) = n^2 for all n in the set of Natural Numbers
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
8. (a) Determine (1 + 3)/( 5 + 7) , (1 + 3 + 5 )/(7...
8. (a) Determine (1 + 3)/( 5 + 7) , (1 + 3 + 5 )/(7 + 9 + 11) , and (1 + 3 + 5 + 7)/( 9 + 11 + 13 + 15 ). (b) Find a formula for (1 + 3 + 5 + · · · + (2n − 1))/((2n + 1) + (2n + 3)+· · + (4n − 1)) for all n ∈ Z + and then prove it.
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in...
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in detail trying to learn.
Mark each series as convergent or divergent 1. ∑n=1∞ln(n)4n 2.  ∑n=1∞ 4+8^n/2+3^n 3. ∑n=1∞ 6n/(n+3) 4. ∑n=1∞1/(7+n2−−√6)...
Mark each series as convergent or divergent 1. ∑n=1∞ln(n)4n 2.  ∑n=1∞ 4+8^n/2+3^n 3. ∑n=1∞ 6n/(n+3) 4. ∑n=1∞1/(7+n2−−√6) 5.  ∑n=3∞ 6/(n^4−16)
Prove that 1/(2n) ≤ [1 · 3 · 5 · ··· · (2n − 1)]/(2 ·...
Prove that 1/(2n) ≤ [1 · 3 · 5 · ··· · (2n − 1)]/(2 · 4 · ··· · 2n) whenever n is a positive integer.
Let T(n) = 1 + 2 + ... + n be the n-th triangular number. For...
Let T(n) = 1 + 2 + ... + n be the n-th triangular number. For example, t(1) = 1, t(2) = 3, t(3) = 6... T(n)= n(n+1)/ 2 a. Show that T(2n) = 3T(n) + T(n-1) b. Show that T(1) + T(2) + T(n) = (n(n+1)(n+2))/6
Number in Family 7 2 7 3 9 5 5 7 3 4 13 2 6...
Number in Family 7 2 7 3 9 5 5 7 3 4 13 2 6 5 5 4 4 5 3 8 5 2 5 4 7 4 3 4 7 10 4 3 4 4 4 3 6 3 2 3 4 3 7 6 4 2 3 4 4 12 17 4 3 2 3 5 2 4 3 5 5 3 3 5 6 4 3 4 2 3 4 7 5 Past enrollment data indicates...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT