Question

Let G be an abelian group, let H = {x in G | (x^3) = eg},...

Let G be an abelian group, let H = {x in G | (x^3) = eg}, where eg is the identity of G. Prove that H is a subgroup of G.

Homework Answers

Answer #1

A subgroup is a subset of the group, which is a group onto itself under the same operation. To check whether a given subset is a subgroup we check using one step subgroup test, two step subgroup test or the finite subgroup test.

In this question we know,

where .

We know, . So . And .

Now, let .

This implies, .

Consider .

Since, the group is abelian, this is equal to

((Since, by definition of H)).

So, since , we get .

Therefore, H is a subgroup by one step subgroup test.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let G be an Abelian group and H a subgroup of G. Prove that G/H is...
Let G be an Abelian group and H a subgroup of G. Prove that G/H is Abelian.
Let G be an Abelian group and let H be a subgroup of G Define K...
Let G be an Abelian group and let H be a subgroup of G Define K = { g∈ G | g3 ∈ H }. Prove that K is a subgroup of G .
Let H be a normal subgroup of G. Assume the quotient group G/H is abelian. Prove...
Let H be a normal subgroup of G. Assume the quotient group G/H is abelian. Prove that, for any two elements x, y ∈ G, we have x^ (-1) y ^(-1)xy ∈ H
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
Suppose that G is a group and H={x|xg=gx for all g∈G}. a.) Prove that H is...
Suppose that G is a group and H={x|xg=gx for all g∈G}. a.) Prove that H is a subgroup of G. b.) Prove that H is abelian.
Let H <| G. If H is abelian and G/H is also abelian, prove or disprove...
Let H <| G. If H is abelian and G/H is also abelian, prove or disprove that G is abelian.
Let G be a group and suppose H = {g5 : g ∈ G} is a...
Let G be a group and suppose H = {g5 : g ∈ G} is a subgroup of G. (a) Prove that H is normal subgroup of G. (b) Prove that every element in G/H has order at most 5.
Let G be a finite group and H be a subgroup of G. Prove that if...
Let G be a finite group and H be a subgroup of G. Prove that if H is only subgroup of G of size |H|, then H is normal in G.
Let G be a finite Abelian group and let n be a positive divisor of|G|. Show...
Let G be a finite Abelian group and let n be a positive divisor of|G|. Show that G has a subgroup of order n.
Let G be a group with subgroups H and K. (a) Prove that H ∩ K...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K must be a subgroup of G. (b) Give an example to show that H ∪ K is not necessarily a subgroup of G. Note: Your answer to part (a) should be a general proof that the set H ∩ K is closed under the operation of G, includes the identity element of G, and contains the inverse in G of each of its elements,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT