Question

Suppose X and Y are connected subsets of metric space X, the X intersection Y is...

Suppose X and Y are connected subsets of metric space X, the X intersection Y is not empty.

show Y union X is connected.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If A and B are closed subsets of a metric space X, whose union and intersection...
If A and B are closed subsets of a metric space X, whose union and intersection are connected, show that A and B themselves are connected. Give an example showing that the assumption of closedness is essential.
Prove that the Gromov-Hausdorff distance between subsets X and Y of some metric space Z is...
Prove that the Gromov-Hausdorff distance between subsets X and Y of some metric space Z is 0 if and only if X = Y question related to Topological data analysis 2
Suppose that E is a closed connected infinite subset of a metric space X. Prove that...
Suppose that E is a closed connected infinite subset of a metric space X. Prove that E is a perfect set.
Let E and F be two disjoint closed subsets in metric space (X,d). Prove that there...
Let E and F be two disjoint closed subsets in metric space (X,d). Prove that there exist two disjoint open subsets U and V in (X,d) such that U⊃E and V⊃F
Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets...
Let f : X → Y and suppose that {Ai}i∈I is an indexed collection of subsets of X. Show that f[∩i∈IAi ] ⊆ ∩i∈I f[Ai ]. Give an example, using two sets A1 and A2, to show that it’s possible for the LHS to be empty while the RHS is non-empty.
Show that an intersection of finitely many open subsets of X is open.
Show that an intersection of finitely many open subsets of X is open.
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if...
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if σ : N → N is one-one, then the sequence (bn = aσ(n))n also converges to L.
Please explain step by step. 3. (a) Assume X is a separable metric space, Y is...
Please explain step by step. 3. (a) Assume X is a separable metric space, Y is any subspace of X. Prove that Y is also separable. (b) Assume X is a compact metric space. Prove that X is separable
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there...
Suppose K is a nonempty compact subset of a metric space X and x∈X. Show, there is a nearest point p∈K to x; that is, there is a point p∈K such that, for all other q∈K, d(p,x)≤d(q,x). [Suggestion: As a start, let S={d(x,y):y∈K} and show there is a sequence (qn) from K such that the numerical sequence (d(x,qn)) converges to inf(S).] Let X=R^2 and T={(x,y):x^2+y^2=1}. Show, there is a point z∈X and distinct points a,b∈T that are nearest points to...
Let (X,d) be a metric space which contains an infinite countable set Ewith the property x,y...
Let (X,d) be a metric space which contains an infinite countable set Ewith the property x,y ∈ E ⇒ d(x,y) = 1. (a) Show E is a closed and bounded subset of X. (b) Show E is not compact. (c) Explain why E cannot be a subset of Rn for any n.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT