Question

Consider the initial value problem y′′+4y=16t,y(0)=8,y′(0)=6.y″+4y=16t,y(0)=8,y′(0)=6. Take the Laplace transform of both sides of the given...

Consider the initial value problem

y′′+4y=16t,y(0)=8,y′(0)=6.y″+4y=16t,y(0)=8,y′(0)=6.

  1. Take the Laplace transform of both sides of the given differential equation to create the corresponding algebraic equation. Denote the Laplace transform of y(t) by Y(s). Do not move any terms from one side of the equation to the other (until you get to part (b) below).


  2. Solve your equation for Y(s)

    Y(s)=L{y(t)}=__________
  3. Take the inverse Laplace transform of both sides of the previous equation to solve for y(t)y(t).

    y(t)=__________

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use...
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use Y for the Laplace transform of y(t) find the equation you get by taking the Laplace transform of the differential equation and solving for Y: Y(s)=? Find the partial fraction decomposition of Y(t) and its inverse Laplace transform to find the solution of the IVP: y(t)=?
Laplace transform y' +3y=1; y(0)=-1 and y''+4y=16t; y(0)=3, y'(0)=-6
Laplace transform y' +3y=1; y(0)=-1 and y''+4y=16t; y(0)=3, y'(0)=-6
Use the Laplace transform to solve the following initial value problem: y′′−4y′−32y=δ(t−6)y(0)=0,y′(0)=0
Use the Laplace transform to solve the following initial value problem: y′′−4y′−32y=δ(t−6)y(0)=0,y′(0)=0
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now...
Given the differential equation y''−2y'+y=0,  y(0)=1,  y'(0)=2 Apply the Laplace Transform and solve for Y(s)=L{y} Y(s) =     Now solve the IVP by using the inverse Laplace Transform y(t)=L^−1{Y(s)} y(t) =
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform...
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform of y(t), i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation and solve for Y(s)=
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y...
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y = 0 y(0) = −3 , y′(0) = −3 First, using Y for the Laplace transform of y(t)y, i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation __________________________ = 0 Now solve for Y(s) = ______________________________ and write the above answer in its partial fraction decomposition, Y(s) = A / (s+a) + B / ((s+a)^2) Y(s) =...
solve the laplace transform y''+4y'=8, y(0)=0, y'(0)=0
solve the laplace transform y''+4y'=8, y(0)=0, y'(0)=0
Consider the following initial value problem. y′ + 5y  = { 0 t  ≤  2 10...
Consider the following initial value problem. y′ + 5y  = { 0 t  ≤  2 10 2  ≤  t  <  7 0 7  ≤  t  <  ∞ y(0)  =  5 (a) Find the Laplace transform of the right hand side of the above differential equation. (b) Let y(t) denote the solution to the above differential equation, and let Y((s) denote the Laplace transform of y(t). Find Y(s). (c) By taking the inverse Laplace transform of your answer to (b), the...
Given the second order initial value problem y′′+y′−6y=5δ(t−2),  y(0)=−5,  y′(0)=5 Y(s) denote the Laplace transform of y. Then...
Given the second order initial value problem y′′+y′−6y=5δ(t−2),  y(0)=−5,  y′(0)=5 Y(s) denote the Laplace transform of y. Then Y(s)= Taking the inverse Laplace transform we obtain y(t)= y(t)=
Solve the initial value problem using the method of the laplace transform. y"+4y'+4y=8t,y(0)=-4,y'(0)=4
Solve the initial value problem using the method of the laplace transform. y"+4y'+4y=8t,y(0)=-4,y'(0)=4
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT