Question

Let p be a prime. (a) Prove that Z/pZ ⊕ Z/pZ has exactly p + 1...

  • Let p be a prime.

    (a) Prove that Z/pZ ⊕ Z/pZ has exactly p + 1 subgroups of order p.
    (b) How many subgroups of order p does Z/pZ ⊕ Z/pZ ⊕ Z/pZ have? Can you generalize further? Explain.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p be an prime. Use the action of G = GL2(Z/pZ) on (Z/pZ)2 and the...
Let p be an prime. Use the action of G = GL2(Z/pZ) on (Z/pZ)2 and the orbit-stabilizer theorem to compute the order of G (Given an element x ∈ X, the orbit O(x) of x is the subsetO(x)={g·x: g∈G}⊂X. Here, we write g · x for ρ(g)(x). The stabilizer of x ∈ X is the subset Gx ={g∈G: g·x=x}⊂G. This is a subgroup of G, and the orbit-stabilizer theorem says (in a particular form) that if G is a finite...
Let p be a prime number. Prove that there are exactly two groups of order p^2...
Let p be a prime number. Prove that there are exactly two groups of order p^2 up to isomorphism, and both are abelian. (Abstract Algebra)
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove that any proper subgroup (meaning a subgroup not equal to G itself) must be cyclic. Hint: what are the possible sizes of the subgroups?
12.29 Let p be a prime. Show that a cyclic group of order p has exactly...
12.29 Let p be a prime. Show that a cyclic group of order p has exactly p−1 automorphisms
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime:...
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime: there exist infinitely many positive integers n such that p | f(n)} is infinite.
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)|...
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)| = p. (b) Suppose a /∈ Z(G). Show that |NG(a)| = p^2 . (c) Show that G has exactly p 2 +p−1 conjugacy classes (don’t forget to count the classes of the elements of Z(G)).
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a...
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a quadratic residue mod p.
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2...
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2 (mod p). (You will need Wilson’s theorem, (p−1)! ≡−1 (mod p).) This gives another proof that if p ≡ 1 (mod 4), then x^2 ≡ −1 (mod p) has a solution.
Let p be a prime that is congruent to 3 mod 4. Prove that there is...
Let p be a prime that is congruent to 3 mod 4. Prove that there is no solution to the congruence x2≡−1 modp. (Hint: what would be the order of x?)
Let p be an odd prime. Prove that −1 is a quadratic residue modulo p if...
Let p be an odd prime. Prove that −1 is a quadratic residue modulo p if p ≡ 1 (mod 4), and −1 is a quadratic nonresidue modulo p if p ≡ 3 (mod 4).